| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fiuni |  |-  ( A e. _V -> U. A = U. ( fi ` A ) ) | 
						
							| 2 | 1 | sseq1d |  |-  ( A e. _V -> ( U. A C_ X <-> U. ( fi ` A ) C_ X ) ) | 
						
							| 3 |  | sspwuni |  |-  ( A C_ ~P X <-> U. A C_ X ) | 
						
							| 4 |  | sspwuni |  |-  ( ( fi ` A ) C_ ~P X <-> U. ( fi ` A ) C_ X ) | 
						
							| 5 | 2 3 4 | 3bitr4g |  |-  ( A e. _V -> ( A C_ ~P X <-> ( fi ` A ) C_ ~P X ) ) | 
						
							| 6 | 5 | biimpa |  |-  ( ( A e. _V /\ A C_ ~P X ) -> ( fi ` A ) C_ ~P X ) | 
						
							| 7 |  | fvprc |  |-  ( -. A e. _V -> ( fi ` A ) = (/) ) | 
						
							| 8 |  | 0ss |  |-  (/) C_ ~P X | 
						
							| 9 | 7 8 | eqsstrdi |  |-  ( -. A e. _V -> ( fi ` A ) C_ ~P X ) | 
						
							| 10 | 9 | adantr |  |-  ( ( -. A e. _V /\ A C_ ~P X ) -> ( fi ` A ) C_ ~P X ) | 
						
							| 11 | 6 10 | pm2.61ian |  |-  ( A C_ ~P X -> ( fi ` A ) C_ ~P X ) |