Step |
Hyp |
Ref |
Expression |
1 |
|
canth2g |
|- ( A e. Fin -> A ~< ~P A ) |
2 |
|
pwfi |
|- ( A e. Fin <-> ~P A e. Fin ) |
3 |
|
fzfi |
|- ( 1 ... ( # ` ~P A ) ) e. Fin |
4 |
|
nnex |
|- NN e. _V |
5 |
|
fz1ssnn |
|- ( 1 ... ( # ` ~P A ) ) C_ NN |
6 |
|
ssdomfi2 |
|- ( ( ( 1 ... ( # ` ~P A ) ) e. Fin /\ NN e. _V /\ ( 1 ... ( # ` ~P A ) ) C_ NN ) -> ( 1 ... ( # ` ~P A ) ) ~<_ NN ) |
7 |
3 4 5 6
|
mp3an |
|- ( 1 ... ( # ` ~P A ) ) ~<_ NN |
8 |
|
isfinite4 |
|- ( ~P A e. Fin <-> ( 1 ... ( # ` ~P A ) ) ~~ ~P A ) |
9 |
|
domen1 |
|- ( ( 1 ... ( # ` ~P A ) ) ~~ ~P A -> ( ( 1 ... ( # ` ~P A ) ) ~<_ NN <-> ~P A ~<_ NN ) ) |
10 |
8 9
|
sylbi |
|- ( ~P A e. Fin -> ( ( 1 ... ( # ` ~P A ) ) ~<_ NN <-> ~P A ~<_ NN ) ) |
11 |
7 10
|
mpbii |
|- ( ~P A e. Fin -> ~P A ~<_ NN ) |
12 |
2 11
|
sylbi |
|- ( A e. Fin -> ~P A ~<_ NN ) |
13 |
|
sdomdomtrfi |
|- ( ( A e. Fin /\ A ~< ~P A /\ ~P A ~<_ NN ) -> A ~< NN ) |
14 |
1 12 13
|
mpd3an23 |
|- ( A e. Fin -> A ~< NN ) |