| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-pss |
|- ( A C. B <-> ( A C_ B /\ A =/= B ) ) |
| 2 |
|
pssinf |
|- ( ( A C. B /\ A ~~ B ) -> -. B e. Fin ) |
| 3 |
2
|
expcom |
|- ( A ~~ B -> ( A C. B -> -. B e. Fin ) ) |
| 4 |
1 3
|
biimtrrid |
|- ( A ~~ B -> ( ( A C_ B /\ A =/= B ) -> -. B e. Fin ) ) |
| 5 |
4
|
expdimp |
|- ( ( A ~~ B /\ A C_ B ) -> ( A =/= B -> -. B e. Fin ) ) |
| 6 |
5
|
necon4ad |
|- ( ( A ~~ B /\ A C_ B ) -> ( B e. Fin -> A = B ) ) |
| 7 |
6
|
3impia |
|- ( ( A ~~ B /\ A C_ B /\ B e. Fin ) -> A = B ) |
| 8 |
7
|
3com13 |
|- ( ( B e. Fin /\ A C_ B /\ A ~~ B ) -> A = B ) |