Metamath Proof Explorer


Theorem fissn0dvdsn0

Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion fissn0dvdsn0
|- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> { n e. NN | A. m e. Z m || n } =/= (/) )

Proof

Step Hyp Ref Expression
1 fissn0dvds
 |-  ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> E. n e. NN A. m e. Z m || n )
2 rabn0
 |-  ( { n e. NN | A. m e. Z m || n } =/= (/) <-> E. n e. NN A. m e. Z m || n )
3 1 2 sylibr
 |-  ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> { n e. NN | A. m e. Z m || n } =/= (/) )