Metamath Proof Explorer


Theorem fitop

Description: A topology is closed under finite intersections. (Contributed by Jeff Hankins, 7-Oct-2009)

Ref Expression
Assertion fitop
|- ( J e. Top -> ( fi ` J ) = J )

Proof

Step Hyp Ref Expression
1 inopn
 |-  ( ( J e. Top /\ x e. J /\ y e. J ) -> ( x i^i y ) e. J )
2 1 3expib
 |-  ( J e. Top -> ( ( x e. J /\ y e. J ) -> ( x i^i y ) e. J ) )
3 2 ralrimivv
 |-  ( J e. Top -> A. x e. J A. y e. J ( x i^i y ) e. J )
4 inficl
 |-  ( J e. Top -> ( A. x e. J A. y e. J ( x i^i y ) e. J <-> ( fi ` J ) = J ) )
5 3 4 mpbid
 |-  ( J e. Top -> ( fi ` J ) = J )