Metamath Proof Explorer


Theorem fiunicl

Description: If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses fiunicl.1
|- ( ( ph /\ x e. A /\ y e. A ) -> ( x u. y ) e. A )
fiunicl.2
|- ( ph -> A e. Fin )
fiunicl.3
|- ( ph -> A =/= (/) )
Assertion fiunicl
|- ( ph -> U. A e. A )

Proof

Step Hyp Ref Expression
1 fiunicl.1
 |-  ( ( ph /\ x e. A /\ y e. A ) -> ( x u. y ) e. A )
2 fiunicl.2
 |-  ( ph -> A e. Fin )
3 fiunicl.3
 |-  ( ph -> A =/= (/) )
4 uniiun
 |-  U. A = U_ z e. A z
5 nfv
 |-  F/ z ph
6 simpr
 |-  ( ( ph /\ z e. A ) -> z e. A )
7 5 6 1 2 3 fiiuncl
 |-  ( ph -> U_ z e. A z e. A )
8 4 7 eqeltrid
 |-  ( ph -> U. A e. A )