| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fiun.1 |
|- ( x = y -> B = C ) |
| 2 |
|
vex |
|- v e. _V |
| 3 |
|
eqeq1 |
|- ( z = v -> ( z = B <-> v = B ) ) |
| 4 |
3
|
rexbidv |
|- ( z = v -> ( E. x e. A z = B <-> E. x e. A v = B ) ) |
| 5 |
2 4
|
elab |
|- ( v e. { z | E. x e. A z = B } <-> E. x e. A v = B ) |
| 6 |
1
|
eqeq2d |
|- ( x = y -> ( v = B <-> v = C ) ) |
| 7 |
6
|
cbvrexvw |
|- ( E. x e. A v = B <-> E. y e. A v = C ) |
| 8 |
|
r19.29 |
|- ( ( A. y e. A ( B C_ C \/ C C_ B ) /\ E. y e. A v = C ) -> E. y e. A ( ( B C_ C \/ C C_ B ) /\ v = C ) ) |
| 9 |
|
sseq12 |
|- ( ( u = B /\ v = C ) -> ( u C_ v <-> B C_ C ) ) |
| 10 |
9
|
ancoms |
|- ( ( v = C /\ u = B ) -> ( u C_ v <-> B C_ C ) ) |
| 11 |
|
sseq12 |
|- ( ( v = C /\ u = B ) -> ( v C_ u <-> C C_ B ) ) |
| 12 |
10 11
|
orbi12d |
|- ( ( v = C /\ u = B ) -> ( ( u C_ v \/ v C_ u ) <-> ( B C_ C \/ C C_ B ) ) ) |
| 13 |
12
|
biimprcd |
|- ( ( B C_ C \/ C C_ B ) -> ( ( v = C /\ u = B ) -> ( u C_ v \/ v C_ u ) ) ) |
| 14 |
13
|
expdimp |
|- ( ( ( B C_ C \/ C C_ B ) /\ v = C ) -> ( u = B -> ( u C_ v \/ v C_ u ) ) ) |
| 15 |
14
|
rexlimivw |
|- ( E. y e. A ( ( B C_ C \/ C C_ B ) /\ v = C ) -> ( u = B -> ( u C_ v \/ v C_ u ) ) ) |
| 16 |
15
|
imp |
|- ( ( E. y e. A ( ( B C_ C \/ C C_ B ) /\ v = C ) /\ u = B ) -> ( u C_ v \/ v C_ u ) ) |
| 17 |
8 16
|
sylan |
|- ( ( ( A. y e. A ( B C_ C \/ C C_ B ) /\ E. y e. A v = C ) /\ u = B ) -> ( u C_ v \/ v C_ u ) ) |
| 18 |
17
|
an32s |
|- ( ( ( A. y e. A ( B C_ C \/ C C_ B ) /\ u = B ) /\ E. y e. A v = C ) -> ( u C_ v \/ v C_ u ) ) |
| 19 |
18
|
adantlll |
|- ( ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) ) /\ u = B ) /\ E. y e. A v = C ) -> ( u C_ v \/ v C_ u ) ) |
| 20 |
7 19
|
sylan2b |
|- ( ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) ) /\ u = B ) /\ E. x e. A v = B ) -> ( u C_ v \/ v C_ u ) ) |
| 21 |
5 20
|
sylan2b |
|- ( ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) ) /\ u = B ) /\ v e. { z | E. x e. A z = B } ) -> ( u C_ v \/ v C_ u ) ) |
| 22 |
21
|
ralrimiva |
|- ( ( ( B : D --> S /\ A. y e. A ( B C_ C \/ C C_ B ) ) /\ u = B ) -> A. v e. { z | E. x e. A z = B } ( u C_ v \/ v C_ u ) ) |