Metamath Proof Explorer


Theorem fival

Description: The set of all the finite intersections of the elements of A . (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 24-Nov-2013)

Ref Expression
Assertion fival
|- ( A e. V -> ( fi ` A ) = { y | E. x e. ( ~P A i^i Fin ) y = |^| x } )

Proof

Step Hyp Ref Expression
1 df-fi
 |-  fi = ( z e. _V |-> { y | E. x e. ( ~P z i^i Fin ) y = |^| x } )
2 pweq
 |-  ( z = A -> ~P z = ~P A )
3 2 ineq1d
 |-  ( z = A -> ( ~P z i^i Fin ) = ( ~P A i^i Fin ) )
4 3 rexeqdv
 |-  ( z = A -> ( E. x e. ( ~P z i^i Fin ) y = |^| x <-> E. x e. ( ~P A i^i Fin ) y = |^| x ) )
5 4 abbidv
 |-  ( z = A -> { y | E. x e. ( ~P z i^i Fin ) y = |^| x } = { y | E. x e. ( ~P A i^i Fin ) y = |^| x } )
6 elex
 |-  ( A e. V -> A e. _V )
7 simpr
 |-  ( ( x e. ( ~P A i^i Fin ) /\ y = |^| x ) -> y = |^| x )
8 elinel1
 |-  ( x e. ( ~P A i^i Fin ) -> x e. ~P A )
9 8 elpwid
 |-  ( x e. ( ~P A i^i Fin ) -> x C_ A )
10 eqvisset
 |-  ( y = |^| x -> |^| x e. _V )
11 intex
 |-  ( x =/= (/) <-> |^| x e. _V )
12 10 11 sylibr
 |-  ( y = |^| x -> x =/= (/) )
13 intssuni2
 |-  ( ( x C_ A /\ x =/= (/) ) -> |^| x C_ U. A )
14 9 12 13 syl2an
 |-  ( ( x e. ( ~P A i^i Fin ) /\ y = |^| x ) -> |^| x C_ U. A )
15 7 14 eqsstrd
 |-  ( ( x e. ( ~P A i^i Fin ) /\ y = |^| x ) -> y C_ U. A )
16 velpw
 |-  ( y e. ~P U. A <-> y C_ U. A )
17 15 16 sylibr
 |-  ( ( x e. ( ~P A i^i Fin ) /\ y = |^| x ) -> y e. ~P U. A )
18 17 rexlimiva
 |-  ( E. x e. ( ~P A i^i Fin ) y = |^| x -> y e. ~P U. A )
19 18 abssi
 |-  { y | E. x e. ( ~P A i^i Fin ) y = |^| x } C_ ~P U. A
20 uniexg
 |-  ( A e. V -> U. A e. _V )
21 20 pwexd
 |-  ( A e. V -> ~P U. A e. _V )
22 ssexg
 |-  ( ( { y | E. x e. ( ~P A i^i Fin ) y = |^| x } C_ ~P U. A /\ ~P U. A e. _V ) -> { y | E. x e. ( ~P A i^i Fin ) y = |^| x } e. _V )
23 19 21 22 sylancr
 |-  ( A e. V -> { y | E. x e. ( ~P A i^i Fin ) y = |^| x } e. _V )
24 1 5 6 23 fvmptd3
 |-  ( A e. V -> ( fi ` A ) = { y | E. x e. ( ~P A i^i Fin ) y = |^| x } )