Step |
Hyp |
Ref |
Expression |
1 |
|
flval |
|- ( A e. RR -> ( |_ ` A ) = ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) ) |
2 |
1
|
eqeq1d |
|- ( A e. RR -> ( ( |_ ` A ) = B <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
3 |
2
|
adantr |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` A ) = B <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
4 |
|
rebtwnz |
|- ( A e. RR -> E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) |
5 |
|
breq1 |
|- ( x = B -> ( x <_ A <-> B <_ A ) ) |
6 |
|
oveq1 |
|- ( x = B -> ( x + 1 ) = ( B + 1 ) ) |
7 |
6
|
breq2d |
|- ( x = B -> ( A < ( x + 1 ) <-> A < ( B + 1 ) ) ) |
8 |
5 7
|
anbi12d |
|- ( x = B -> ( ( x <_ A /\ A < ( x + 1 ) ) <-> ( B <_ A /\ A < ( B + 1 ) ) ) ) |
9 |
8
|
riota2 |
|- ( ( B e. ZZ /\ E! x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) -> ( ( B <_ A /\ A < ( B + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
10 |
4 9
|
sylan2 |
|- ( ( B e. ZZ /\ A e. RR ) -> ( ( B <_ A /\ A < ( B + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
11 |
10
|
ancoms |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( B <_ A /\ A < ( B + 1 ) ) <-> ( iota_ x e. ZZ ( x <_ A /\ A < ( x + 1 ) ) ) = B ) ) |
12 |
3 11
|
bitr4d |
|- ( ( A e. RR /\ B e. ZZ ) -> ( ( |_ ` A ) = B <-> ( B <_ A /\ A < ( B + 1 ) ) ) ) |