Metamath Proof Explorer


Theorem flcld

Description: The floor (greatest integer) function is an integer (closure law). (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypothesis flcld.1
|- ( ph -> A e. RR )
Assertion flcld
|- ( ph -> ( |_ ` A ) e. ZZ )

Proof

Step Hyp Ref Expression
1 flcld.1
 |-  ( ph -> A e. RR )
2 flcl
 |-  ( A e. RR -> ( |_ ` A ) e. ZZ )
3 1 2 syl
 |-  ( ph -> ( |_ ` A ) e. ZZ )