Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( 1st ` K ) = ( 1st ` K ) |
2 |
|
eqid |
|- ( 2nd ` K ) = ( 2nd ` K ) |
3 |
|
eqid |
|- ran ( 1st ` K ) = ran ( 1st ` K ) |
4 |
|
eqid |
|- ( GId ` ( 1st ` K ) ) = ( GId ` ( 1st ` K ) ) |
5 |
1 2 3 4
|
drngoi |
|- ( K e. DivRingOps -> ( K e. RingOps /\ ( ( 2nd ` K ) |` ( ( ran ( 1st ` K ) \ { ( GId ` ( 1st ` K ) ) } ) X. ( ran ( 1st ` K ) \ { ( GId ` ( 1st ` K ) ) } ) ) ) e. GrpOp ) ) |
6 |
5
|
simpld |
|- ( K e. DivRingOps -> K e. RingOps ) |
7 |
6
|
anim1i |
|- ( ( K e. DivRingOps /\ K e. Com2 ) -> ( K e. RingOps /\ K e. Com2 ) ) |
8 |
|
df-fld |
|- Fld = ( DivRingOps i^i Com2 ) |
9 |
8
|
elin2 |
|- ( K e. Fld <-> ( K e. DivRingOps /\ K e. Com2 ) ) |
10 |
|
iscrngo |
|- ( K e. CRingOps <-> ( K e. RingOps /\ K e. Com2 ) ) |
11 |
7 9 10
|
3imtr4i |
|- ( K e. Fld -> K e. CRingOps ) |