Description: A field is a division ring. (Contributed by SN, 17-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flddrngd.1 | |- ( ph -> R e. Field ) | |
| Assertion | flddrngd | |- ( ph -> R e. DivRing ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | flddrngd.1 | |- ( ph -> R e. Field ) | |
| 2 | isfld | |- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) | |
| 3 | 2 | simplbi | |- ( R e. Field -> R e. DivRing ) | 
| 4 | 1 3 | syl | |- ( ph -> R e. DivRing ) |