Description: A field is a division ring. (Contributed by SN, 17-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | flddrngd.1 | |- ( ph -> R e. Field ) |
|
Assertion | flddrngd | |- ( ph -> R e. DivRing ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flddrngd.1 | |- ( ph -> R e. Field ) |
|
2 | isfld | |- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
|
3 | 2 | simplbi | |- ( R e. Field -> R e. DivRing ) |
4 | 1 3 | syl | |- ( ph -> R e. DivRing ) |