Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenfld.1 |
|- B = ( Base ` F ) |
2 |
|
fldgenfld.2 |
|- ( ph -> F e. Field ) |
3 |
|
fldgenfld.3 |
|- ( ph -> S C_ B ) |
4 |
|
isfld |
|- ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) ) |
5 |
2 4
|
sylib |
|- ( ph -> ( F e. DivRing /\ F e. CRing ) ) |
6 |
5
|
simpld |
|- ( ph -> F e. DivRing ) |
7 |
1 6 3
|
fldgensdrg |
|- ( ph -> ( F fldGen S ) e. ( SubDRing ` F ) ) |
8 |
|
fldsdrgfld |
|- ( ( F e. Field /\ ( F fldGen S ) e. ( SubDRing ` F ) ) -> ( F |`s ( F fldGen S ) ) e. Field ) |
9 |
2 7 8
|
syl2anc |
|- ( ph -> ( F |`s ( F fldGen S ) ) e. Field ) |