Metamath Proof Explorer


Theorem fldgenid

Description: The subfield of a field F generated by the whole base set of F is F itself. (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Hypotheses fldgenval.1
|- B = ( Base ` F )
fldgenval.2
|- ( ph -> F e. DivRing )
Assertion fldgenid
|- ( ph -> ( F fldGen B ) = B )

Proof

Step Hyp Ref Expression
1 fldgenval.1
 |-  B = ( Base ` F )
2 fldgenval.2
 |-  ( ph -> F e. DivRing )
3 ssidd
 |-  ( ph -> B C_ B )
4 1 2 3 fldgenssv
 |-  ( ph -> ( F fldGen B ) C_ B )
5 1 2 3 fldgenssid
 |-  ( ph -> B C_ ( F fldGen B ) )
6 4 5 eqssd
 |-  ( ph -> ( F fldGen B ) = B )