Metamath Proof Explorer


Theorem fldgenidfld

Description: The subfield generated by a subfield is the subfield itself. (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses fldgenval.1
|- B = ( Base ` F )
fldgenval.2
|- ( ph -> F e. DivRing )
fldgenidfld.s
|- ( ph -> S e. ( SubDRing ` F ) )
Assertion fldgenidfld
|- ( ph -> ( F fldGen S ) = S )

Proof

Step Hyp Ref Expression
1 fldgenval.1
 |-  B = ( Base ` F )
2 fldgenval.2
 |-  ( ph -> F e. DivRing )
3 fldgenidfld.s
 |-  ( ph -> S e. ( SubDRing ` F ) )
4 1 sdrgss
 |-  ( S e. ( SubDRing ` F ) -> S C_ B )
5 3 4 syl
 |-  ( ph -> S C_ B )
6 1 2 5 fldgenval
 |-  ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } )
7 intmin
 |-  ( S e. ( SubDRing ` F ) -> |^| { a e. ( SubDRing ` F ) | S C_ a } = S )
8 3 7 syl
 |-  ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } = S )
9 6 8 eqtrd
 |-  ( ph -> ( F fldGen S ) = S )