Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
3 |
|
fldgenidfld.s |
|- ( ph -> S e. ( SubDRing ` F ) ) |
4 |
1
|
sdrgss |
|- ( S e. ( SubDRing ` F ) -> S C_ B ) |
5 |
3 4
|
syl |
|- ( ph -> S C_ B ) |
6 |
1 2 5
|
fldgenval |
|- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
7 |
|
intmin |
|- ( S e. ( SubDRing ` F ) -> |^| { a e. ( SubDRing ` F ) | S C_ a } = S ) |
8 |
3 7
|
syl |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } = S ) |
9 |
6 8
|
eqtrd |
|- ( ph -> ( F fldGen S ) = S ) |