Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
3 |
|
fldgenval.3 |
|- ( ph -> S C_ B ) |
4 |
1 2 3
|
fldgenval |
|- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
5 |
2
|
drngringd |
|- ( ph -> F e. Ring ) |
6 |
|
eqid |
|- ( F |`s |^| { a e. ( SubDRing ` F ) | S C_ a } ) = ( F |`s |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
7 |
|
sseq2 |
|- ( a = x -> ( S C_ a <-> S C_ x ) ) |
8 |
7
|
elrab |
|- ( x e. { a e. ( SubDRing ` F ) | S C_ a } <-> ( x e. ( SubDRing ` F ) /\ S C_ x ) ) |
9 |
8
|
biimpi |
|- ( x e. { a e. ( SubDRing ` F ) | S C_ a } -> ( x e. ( SubDRing ` F ) /\ S C_ x ) ) |
10 |
9
|
adantl |
|- ( ( ph /\ x e. { a e. ( SubDRing ` F ) | S C_ a } ) -> ( x e. ( SubDRing ` F ) /\ S C_ x ) ) |
11 |
10
|
simpld |
|- ( ( ph /\ x e. { a e. ( SubDRing ` F ) | S C_ a } ) -> x e. ( SubDRing ` F ) ) |
12 |
|
issdrg |
|- ( x e. ( SubDRing ` F ) <-> ( F e. DivRing /\ x e. ( SubRing ` F ) /\ ( F |`s x ) e. DivRing ) ) |
13 |
12
|
simp2bi |
|- ( x e. ( SubDRing ` F ) -> x e. ( SubRing ` F ) ) |
14 |
11 13
|
syl |
|- ( ( ph /\ x e. { a e. ( SubDRing ` F ) | S C_ a } ) -> x e. ( SubRing ` F ) ) |
15 |
14
|
ex |
|- ( ph -> ( x e. { a e. ( SubDRing ` F ) | S C_ a } -> x e. ( SubRing ` F ) ) ) |
16 |
15
|
ssrdv |
|- ( ph -> { a e. ( SubDRing ` F ) | S C_ a } C_ ( SubRing ` F ) ) |
17 |
|
sseq2 |
|- ( a = B -> ( S C_ a <-> S C_ B ) ) |
18 |
1
|
sdrgid |
|- ( F e. DivRing -> B e. ( SubDRing ` F ) ) |
19 |
2 18
|
syl |
|- ( ph -> B e. ( SubDRing ` F ) ) |
20 |
17 19 3
|
elrabd |
|- ( ph -> B e. { a e. ( SubDRing ` F ) | S C_ a } ) |
21 |
20
|
ne0d |
|- ( ph -> { a e. ( SubDRing ` F ) | S C_ a } =/= (/) ) |
22 |
12
|
simp3bi |
|- ( x e. ( SubDRing ` F ) -> ( F |`s x ) e. DivRing ) |
23 |
11 22
|
syl |
|- ( ( ph /\ x e. { a e. ( SubDRing ` F ) | S C_ a } ) -> ( F |`s x ) e. DivRing ) |
24 |
6 2 16 21 23
|
subdrgint |
|- ( ph -> ( F |`s |^| { a e. ( SubDRing ` F ) | S C_ a } ) e. DivRing ) |
25 |
24
|
drngringd |
|- ( ph -> ( F |`s |^| { a e. ( SubDRing ` F ) | S C_ a } ) e. Ring ) |
26 |
|
intss1 |
|- ( B e. { a e. ( SubDRing ` F ) | S C_ a } -> |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B ) |
27 |
20 26
|
syl |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B ) |
28 |
|
issdrg |
|- ( a e. ( SubDRing ` F ) <-> ( F e. DivRing /\ a e. ( SubRing ` F ) /\ ( F |`s a ) e. DivRing ) ) |
29 |
28
|
simp2bi |
|- ( a e. ( SubDRing ` F ) -> a e. ( SubRing ` F ) ) |
30 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
31 |
30
|
subrg1cl |
|- ( a e. ( SubRing ` F ) -> ( 1r ` F ) e. a ) |
32 |
29 31
|
syl |
|- ( a e. ( SubDRing ` F ) -> ( 1r ` F ) e. a ) |
33 |
32
|
ad2antlr |
|- ( ( ( ph /\ a e. ( SubDRing ` F ) ) /\ S C_ a ) -> ( 1r ` F ) e. a ) |
34 |
33
|
ex |
|- ( ( ph /\ a e. ( SubDRing ` F ) ) -> ( S C_ a -> ( 1r ` F ) e. a ) ) |
35 |
34
|
ralrimiva |
|- ( ph -> A. a e. ( SubDRing ` F ) ( S C_ a -> ( 1r ` F ) e. a ) ) |
36 |
|
fvex |
|- ( 1r ` F ) e. _V |
37 |
36
|
elintrab |
|- ( ( 1r ` F ) e. |^| { a e. ( SubDRing ` F ) | S C_ a } <-> A. a e. ( SubDRing ` F ) ( S C_ a -> ( 1r ` F ) e. a ) ) |
38 |
35 37
|
sylibr |
|- ( ph -> ( 1r ` F ) e. |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
39 |
1 30
|
issubrg |
|- ( |^| { a e. ( SubDRing ` F ) | S C_ a } e. ( SubRing ` F ) <-> ( ( F e. Ring /\ ( F |`s |^| { a e. ( SubDRing ` F ) | S C_ a } ) e. Ring ) /\ ( |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B /\ ( 1r ` F ) e. |^| { a e. ( SubDRing ` F ) | S C_ a } ) ) ) |
40 |
39
|
biimpri |
|- ( ( ( F e. Ring /\ ( F |`s |^| { a e. ( SubDRing ` F ) | S C_ a } ) e. Ring ) /\ ( |^| { a e. ( SubDRing ` F ) | S C_ a } C_ B /\ ( 1r ` F ) e. |^| { a e. ( SubDRing ` F ) | S C_ a } ) ) -> |^| { a e. ( SubDRing ` F ) | S C_ a } e. ( SubRing ` F ) ) |
41 |
5 25 27 38 40
|
syl22anc |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } e. ( SubRing ` F ) ) |
42 |
|
issdrg |
|- ( |^| { a e. ( SubDRing ` F ) | S C_ a } e. ( SubDRing ` F ) <-> ( F e. DivRing /\ |^| { a e. ( SubDRing ` F ) | S C_ a } e. ( SubRing ` F ) /\ ( F |`s |^| { a e. ( SubDRing ` F ) | S C_ a } ) e. DivRing ) ) |
43 |
2 41 24 42
|
syl3anbrc |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | S C_ a } e. ( SubDRing ` F ) ) |
44 |
4 43
|
eqeltrd |
|- ( ph -> ( F fldGen S ) e. ( SubDRing ` F ) ) |