Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
3 |
|
fldgenval.3 |
|- ( ph -> S C_ B ) |
4 |
|
fldgenss.t |
|- ( ph -> T C_ S ) |
5 |
4
|
adantr |
|- ( ( ph /\ S C_ a ) -> T C_ S ) |
6 |
|
simpr |
|- ( ( ph /\ S C_ a ) -> S C_ a ) |
7 |
5 6
|
sstrd |
|- ( ( ph /\ S C_ a ) -> T C_ a ) |
8 |
7
|
ex |
|- ( ph -> ( S C_ a -> T C_ a ) ) |
9 |
8
|
adantr |
|- ( ( ph /\ a e. ( SubDRing ` F ) ) -> ( S C_ a -> T C_ a ) ) |
10 |
9
|
ss2rabdv |
|- ( ph -> { a e. ( SubDRing ` F ) | S C_ a } C_ { a e. ( SubDRing ` F ) | T C_ a } ) |
11 |
|
intss |
|- ( { a e. ( SubDRing ` F ) | S C_ a } C_ { a e. ( SubDRing ` F ) | T C_ a } -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
12 |
10 11
|
syl |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
13 |
4 3
|
sstrd |
|- ( ph -> T C_ B ) |
14 |
1 2 13
|
fldgenval |
|- ( ph -> ( F fldGen T ) = |^| { a e. ( SubDRing ` F ) | T C_ a } ) |
15 |
1 2 3
|
fldgenval |
|- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
16 |
12 14 15
|
3sstr4d |
|- ( ph -> ( F fldGen T ) C_ ( F fldGen S ) ) |