Description: The field generated by a set of elements contains those elements. See lspssid . (Contributed by Thierry Arnoux, 15-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fldgenval.1 | |- B = ( Base ` F ) |
|
fldgenval.2 | |- ( ph -> F e. DivRing ) |
||
fldgenval.3 | |- ( ph -> S C_ B ) |
||
Assertion | fldgenssid | |- ( ph -> S C_ ( F fldGen S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fldgenval.1 | |- B = ( Base ` F ) |
|
2 | fldgenval.2 | |- ( ph -> F e. DivRing ) |
|
3 | fldgenval.3 | |- ( ph -> S C_ B ) |
|
4 | ssintub | |- S C_ |^| { a e. ( SubDRing ` F ) | S C_ a } |
|
5 | 1 2 3 | fldgenval | |- ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } ) |
6 | 4 5 | sseqtrrid | |- ( ph -> S C_ ( F fldGen S ) ) |