Metamath Proof Explorer


Theorem fldgenssid

Description: The field generated by a set of elements contains those elements. See lspssid . (Contributed by Thierry Arnoux, 15-Jan-2025)

Ref Expression
Hypotheses fldgenval.1
|- B = ( Base ` F )
fldgenval.2
|- ( ph -> F e. DivRing )
fldgenval.3
|- ( ph -> S C_ B )
Assertion fldgenssid
|- ( ph -> S C_ ( F fldGen S ) )

Proof

Step Hyp Ref Expression
1 fldgenval.1
 |-  B = ( Base ` F )
2 fldgenval.2
 |-  ( ph -> F e. DivRing )
3 fldgenval.3
 |-  ( ph -> S C_ B )
4 ssintub
 |-  S C_ |^| { a e. ( SubDRing ` F ) | S C_ a }
5 1 2 3 fldgenval
 |-  ( ph -> ( F fldGen S ) = |^| { a e. ( SubDRing ` F ) | S C_ a } )
6 4 5 sseqtrrid
 |-  ( ph -> S C_ ( F fldGen S ) )