Metamath Proof Explorer


Theorem fldgenssp

Description: The field generated by a set of elements in a division ring is contained in any sub-division-ring which contains those elements. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses fldgenval.1
|- B = ( Base ` F )
fldgenval.2
|- ( ph -> F e. DivRing )
fldgenidfld.s
|- ( ph -> S e. ( SubDRing ` F ) )
fldgenssp.t
|- ( ph -> T C_ S )
Assertion fldgenssp
|- ( ph -> ( F fldGen T ) C_ S )

Proof

Step Hyp Ref Expression
1 fldgenval.1
 |-  B = ( Base ` F )
2 fldgenval.2
 |-  ( ph -> F e. DivRing )
3 fldgenidfld.s
 |-  ( ph -> S e. ( SubDRing ` F ) )
4 fldgenssp.t
 |-  ( ph -> T C_ S )
5 issdrg
 |-  ( S e. ( SubDRing ` F ) <-> ( F e. DivRing /\ S e. ( SubRing ` F ) /\ ( F |`s S ) e. DivRing ) )
6 3 5 sylib
 |-  ( ph -> ( F e. DivRing /\ S e. ( SubRing ` F ) /\ ( F |`s S ) e. DivRing ) )
7 6 simp2d
 |-  ( ph -> S e. ( SubRing ` F ) )
8 1 subrgss
 |-  ( S e. ( SubRing ` F ) -> S C_ B )
9 7 8 syl
 |-  ( ph -> S C_ B )
10 4 9 sstrd
 |-  ( ph -> T C_ B )
11 1 2 10 fldgenval
 |-  ( ph -> ( F fldGen T ) = |^| { a e. ( SubDRing ` F ) | T C_ a } )
12 sseq2
 |-  ( a = S -> ( T C_ a <-> T C_ S ) )
13 12 3 4 elrabd
 |-  ( ph -> S e. { a e. ( SubDRing ` F ) | T C_ a } )
14 intss1
 |-  ( S e. { a e. ( SubDRing ` F ) | T C_ a } -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ S )
15 13 14 syl
 |-  ( ph -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ S )
16 11 15 eqsstrd
 |-  ( ph -> ( F fldGen T ) C_ S )