Step |
Hyp |
Ref |
Expression |
1 |
|
fldgenval.1 |
|- B = ( Base ` F ) |
2 |
|
fldgenval.2 |
|- ( ph -> F e. DivRing ) |
3 |
|
fldgenidfld.s |
|- ( ph -> S e. ( SubDRing ` F ) ) |
4 |
|
fldgenssp.t |
|- ( ph -> T C_ S ) |
5 |
|
issdrg |
|- ( S e. ( SubDRing ` F ) <-> ( F e. DivRing /\ S e. ( SubRing ` F ) /\ ( F |`s S ) e. DivRing ) ) |
6 |
3 5
|
sylib |
|- ( ph -> ( F e. DivRing /\ S e. ( SubRing ` F ) /\ ( F |`s S ) e. DivRing ) ) |
7 |
6
|
simp2d |
|- ( ph -> S e. ( SubRing ` F ) ) |
8 |
1
|
subrgss |
|- ( S e. ( SubRing ` F ) -> S C_ B ) |
9 |
7 8
|
syl |
|- ( ph -> S C_ B ) |
10 |
4 9
|
sstrd |
|- ( ph -> T C_ B ) |
11 |
1 2 10
|
fldgenval |
|- ( ph -> ( F fldGen T ) = |^| { a e. ( SubDRing ` F ) | T C_ a } ) |
12 |
|
sseq2 |
|- ( a = S -> ( T C_ a <-> T C_ S ) ) |
13 |
12 3 4
|
elrabd |
|- ( ph -> S e. { a e. ( SubDRing ` F ) | T C_ a } ) |
14 |
|
intss1 |
|- ( S e. { a e. ( SubDRing ` F ) | T C_ a } -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ S ) |
15 |
13 14
|
syl |
|- ( ph -> |^| { a e. ( SubDRing ` F ) | T C_ a } C_ S ) |
16 |
11 15
|
eqsstrd |
|- ( ph -> ( F fldGen T ) C_ S ) |