| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							drhmsubc.c | 
							 |-  C = ( U i^i DivRing )  | 
						
						
							| 2 | 
							
								
							 | 
							drhmsubc.j | 
							 |-  J = ( r e. C , s e. C |-> ( r RingHom s ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fldhmsubc.d | 
							 |-  D = ( U i^i Field )  | 
						
						
							| 4 | 
							
								
							 | 
							fldhmsubc.f | 
							 |-  F = ( r e. D , s e. D |-> ( r RingHom s ) )  | 
						
						
							| 5 | 
							
								
							 | 
							elin | 
							 |-  ( r e. ( DivRing i^i CRing ) <-> ( r e. DivRing /\ r e. CRing ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							simprbi | 
							 |-  ( r e. ( DivRing i^i CRing ) -> r e. CRing )  | 
						
						
							| 7 | 
							
								
							 | 
							crngring | 
							 |-  ( r e. CRing -> r e. Ring )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							 |-  ( r e. ( DivRing i^i CRing ) -> r e. Ring )  | 
						
						
							| 9 | 
							
								
							 | 
							df-field | 
							 |-  Field = ( DivRing i^i CRing )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							eleq2s | 
							 |-  ( r e. Field -> r e. Ring )  | 
						
						
							| 11 | 
							
								10
							 | 
							rgen | 
							 |-  A. r e. Field r e. Ring  | 
						
						
							| 12 | 
							
								11 3 4
							 | 
							srhmsubc | 
							 |-  ( U e. V -> F e. ( Subcat ` ( RingCat ` U ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							inss1 | 
							 |-  ( DivRing i^i CRing ) C_ DivRing  | 
						
						
							| 14 | 
							
								9 13
							 | 
							eqsstri | 
							 |-  Field C_ DivRing  | 
						
						
							| 15 | 
							
								
							 | 
							sslin | 
							 |-  ( Field C_ DivRing -> ( U i^i Field ) C_ ( U i^i DivRing ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ax-mp | 
							 |-  ( U i^i Field ) C_ ( U i^i DivRing )  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( U e. V -> ( U i^i Field ) C_ ( U i^i DivRing ) )  | 
						
						
							| 18 | 
							
								3 1
							 | 
							sseq12i | 
							 |-  ( D C_ C <-> ( U i^i Field ) C_ ( U i^i DivRing ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							sylibr | 
							 |-  ( U e. V -> D C_ C )  | 
						
						
							| 20 | 
							
								
							 | 
							ssidd | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x RingHom y ) C_ ( x RingHom y ) )  | 
						
						
							| 21 | 
							
								4
							 | 
							a1i | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> F = ( r e. D , s e. D |-> ( r RingHom s ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq12 | 
							 |-  ( ( r = x /\ s = y ) -> ( r RingHom s ) = ( x RingHom y ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantl | 
							 |-  ( ( ( U e. V /\ ( x e. D /\ y e. D ) ) /\ ( r = x /\ s = y ) ) -> ( r RingHom s ) = ( x RingHom y ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simprl | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> x e. D )  | 
						
						
							| 25 | 
							
								
							 | 
							simpr | 
							 |-  ( ( x e. D /\ y e. D ) -> y e. D )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantl | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> y e. D )  | 
						
						
							| 27 | 
							
								
							 | 
							ovexd | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x RingHom y ) e. _V )  | 
						
						
							| 28 | 
							
								21 23 24 26 27
							 | 
							ovmpod | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x F y ) = ( x RingHom y ) )  | 
						
						
							| 29 | 
							
								2
							 | 
							a1i | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> J = ( r e. C , s e. C |-> ( r RingHom s ) ) )  | 
						
						
							| 30 | 
							
								16 18
							 | 
							mpbir | 
							 |-  D C_ C  | 
						
						
							| 31 | 
							
								30
							 | 
							sseli | 
							 |-  ( x e. D -> x e. C )  | 
						
						
							| 32 | 
							
								31
							 | 
							ad2antrl | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> x e. C )  | 
						
						
							| 33 | 
							
								30
							 | 
							sseli | 
							 |-  ( y e. D -> y e. C )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantl | 
							 |-  ( ( x e. D /\ y e. D ) -> y e. C )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantl | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> y e. C )  | 
						
						
							| 36 | 
							
								29 23 32 35 27
							 | 
							ovmpod | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x J y ) = ( x RingHom y ) )  | 
						
						
							| 37 | 
							
								20 28 36
							 | 
							3sstr4d | 
							 |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x F y ) C_ ( x J y ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ralrimivva | 
							 |-  ( U e. V -> A. x e. D A. y e. D ( x F y ) C_ ( x J y ) )  | 
						
						
							| 39 | 
							
								
							 | 
							ovex | 
							 |-  ( r RingHom s ) e. _V  | 
						
						
							| 40 | 
							
								4 39
							 | 
							fnmpoi | 
							 |-  F Fn ( D X. D )  | 
						
						
							| 41 | 
							
								40
							 | 
							a1i | 
							 |-  ( U e. V -> F Fn ( D X. D ) )  | 
						
						
							| 42 | 
							
								2 39
							 | 
							fnmpoi | 
							 |-  J Fn ( C X. C )  | 
						
						
							| 43 | 
							
								42
							 | 
							a1i | 
							 |-  ( U e. V -> J Fn ( C X. C ) )  | 
						
						
							| 44 | 
							
								
							 | 
							inex1g | 
							 |-  ( U e. V -> ( U i^i DivRing ) e. _V )  | 
						
						
							| 45 | 
							
								1 44
							 | 
							eqeltrid | 
							 |-  ( U e. V -> C e. _V )  | 
						
						
							| 46 | 
							
								41 43 45
							 | 
							isssc | 
							 |-  ( U e. V -> ( F C_cat J <-> ( D C_ C /\ A. x e. D A. y e. D ( x F y ) C_ ( x J y ) ) ) )  | 
						
						
							| 47 | 
							
								19 38 46
							 | 
							mpbir2and | 
							 |-  ( U e. V -> F C_cat J )  | 
						
						
							| 48 | 
							
								1 2
							 | 
							drhmsubc | 
							 |-  ( U e. V -> J e. ( Subcat ` ( RingCat ` U ) ) )  | 
						
						
							| 49 | 
							
								
							 | 
							eqid | 
							 |-  ( ( RingCat ` U ) |`cat J ) = ( ( RingCat ` U ) |`cat J )  | 
						
						
							| 50 | 
							
								49
							 | 
							subsubc | 
							 |-  ( J e. ( Subcat ` ( RingCat ` U ) ) -> ( F e. ( Subcat ` ( ( RingCat ` U ) |`cat J ) ) <-> ( F e. ( Subcat ` ( RingCat ` U ) ) /\ F C_cat J ) ) )  | 
						
						
							| 51 | 
							
								48 50
							 | 
							syl | 
							 |-  ( U e. V -> ( F e. ( Subcat ` ( ( RingCat ` U ) |`cat J ) ) <-> ( F e. ( Subcat ` ( RingCat ` U ) ) /\ F C_cat J ) ) )  | 
						
						
							| 52 | 
							
								12 47 51
							 | 
							mpbir2and | 
							 |-  ( U e. V -> F e. ( Subcat ` ( ( RingCat ` U ) |`cat J ) ) )  |