Description: A field is an integral domain. (Contributed by Mario Carneiro, 29-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fldidom | |- ( R e. Field -> R e. IDomn ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfld | |- ( R e. Field <-> ( R e. DivRing /\ R e. CRing ) ) |
|
2 | 1 | simprbi | |- ( R e. Field -> R e. CRing ) |
3 | 1 | simplbi | |- ( R e. Field -> R e. DivRing ) |
4 | drngdomn | |- ( R e. DivRing -> R e. Domn ) |
|
5 | 3 4 | syl | |- ( R e. Field -> R e. Domn ) |
6 | isidom | |- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
|
7 | 2 5 6 | sylanbrc | |- ( R e. Field -> R e. IDomn ) |