Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( |_ ` A ) = ( |_ ` A ) |
2 |
|
eqid |
|- ( A - ( |_ ` A ) ) = ( A - ( |_ ` A ) ) |
3 |
1 2
|
intfrac2 |
|- ( A e. RR -> ( 0 <_ ( A - ( |_ ` A ) ) /\ ( A - ( |_ ` A ) ) < 1 /\ A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) ) |
4 |
3
|
simp3d |
|- ( A e. RR -> A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) |
5 |
4
|
adantr |
|- ( ( A e. RR /\ N e. NN ) -> A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) |
6 |
5
|
oveq1d |
|- ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) ) |
7 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
8 |
7
|
recnd |
|- ( A e. RR -> ( |_ ` A ) e. CC ) |
9 |
|
resubcl |
|- ( ( A e. RR /\ ( |_ ` A ) e. RR ) -> ( A - ( |_ ` A ) ) e. RR ) |
10 |
7 9
|
mpdan |
|- ( A e. RR -> ( A - ( |_ ` A ) ) e. RR ) |
11 |
10
|
recnd |
|- ( A e. RR -> ( A - ( |_ ` A ) ) e. CC ) |
12 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
13 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
14 |
12 13
|
jca |
|- ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) |
15 |
|
divdir |
|- ( ( ( |_ ` A ) e. CC /\ ( A - ( |_ ` A ) ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
16 |
8 11 14 15
|
syl2an3an |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
17 |
6 16
|
eqtrd |
|- ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
18 |
|
flcl |
|- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
19 |
|
eqid |
|- ( |_ ` ( ( |_ ` A ) / N ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) |
20 |
|
eqid |
|- ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) = ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) |
21 |
19 20
|
intfracq |
|- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) /\ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) ) |
22 |
21
|
simp3d |
|- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) |
23 |
18 22
|
sylan |
|- ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) |
24 |
23
|
oveq1d |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) = ( ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
25 |
7
|
adantr |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` A ) e. RR ) |
26 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
27 |
26
|
adantl |
|- ( ( A e. RR /\ N e. NN ) -> N e. RR ) |
28 |
13
|
adantl |
|- ( ( A e. RR /\ N e. NN ) -> N =/= 0 ) |
29 |
25 27 28
|
redivcld |
|- ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` A ) / N ) e. RR ) |
30 |
|
reflcl |
|- ( ( ( |_ ` A ) / N ) e. RR -> ( |_ ` ( ( |_ ` A ) / N ) ) e. RR ) |
31 |
29 30
|
syl |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. RR ) |
32 |
31
|
recnd |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. CC ) |
33 |
29 31
|
resubcld |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR ) |
34 |
33
|
recnd |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. CC ) |
35 |
10
|
adantr |
|- ( ( A e. RR /\ N e. NN ) -> ( A - ( |_ ` A ) ) e. RR ) |
36 |
35 27 28
|
redivcld |
|- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) e. RR ) |
37 |
36
|
recnd |
|- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) e. CC ) |
38 |
32 34 37
|
addassd |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) |
39 |
17 24 38
|
3eqtrd |
|- ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) |
40 |
39
|
fveq2d |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( A / N ) ) = ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) ) |
41 |
21
|
simp1d |
|- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) |
42 |
18 41
|
sylan |
|- ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) |
43 |
|
fracge0 |
|- ( A e. RR -> 0 <_ ( A - ( |_ ` A ) ) ) |
44 |
10 43
|
jca |
|- ( A e. RR -> ( ( A - ( |_ ` A ) ) e. RR /\ 0 <_ ( A - ( |_ ` A ) ) ) ) |
45 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
46 |
26 45
|
jca |
|- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
47 |
|
divge0 |
|- ( ( ( ( A - ( |_ ` A ) ) e. RR /\ 0 <_ ( A - ( |_ ` A ) ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( A - ( |_ ` A ) ) / N ) ) |
48 |
44 46 47
|
syl2an |
|- ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( A - ( |_ ` A ) ) / N ) ) |
49 |
33 36 42 48
|
addge0d |
|- ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
50 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
51 |
26 50
|
syl |
|- ( N e. NN -> ( N - 1 ) e. RR ) |
52 |
51 26 13
|
redivcld |
|- ( N e. NN -> ( ( N - 1 ) / N ) e. RR ) |
53 |
|
nnrecre |
|- ( N e. NN -> ( 1 / N ) e. RR ) |
54 |
52 53
|
jca |
|- ( N e. NN -> ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) |
55 |
54
|
adantl |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) |
56 |
33 36 55
|
jca31 |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR /\ ( ( A - ( |_ ` A ) ) / N ) e. RR ) /\ ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) ) |
57 |
21
|
simp2d |
|- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) ) |
58 |
18 57
|
sylan |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) ) |
59 |
|
fraclt1 |
|- ( A e. RR -> ( A - ( |_ ` A ) ) < 1 ) |
60 |
59
|
adantr |
|- ( ( A e. RR /\ N e. NN ) -> ( A - ( |_ ` A ) ) < 1 ) |
61 |
|
1re |
|- 1 e. RR |
62 |
|
ltdiv1 |
|- ( ( ( A - ( |_ ` A ) ) e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
63 |
61 62
|
mp3an2 |
|- ( ( ( A - ( |_ ` A ) ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
64 |
10 46 63
|
syl2an |
|- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
65 |
60 64
|
mpbid |
|- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) |
66 |
58 65
|
jca |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
67 |
|
leltadd |
|- ( ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR /\ ( ( A - ( |_ ` A ) ) / N ) e. RR ) /\ ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) -> ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) ) |
68 |
56 66 67
|
sylc |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
69 |
|
ax-1cn |
|- 1 e. CC |
70 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
71 |
12 69 70
|
sylancl |
|- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
72 |
71
|
oveq1d |
|- ( N e. NN -> ( ( ( N - 1 ) + 1 ) / N ) = ( N / N ) ) |
73 |
51
|
recnd |
|- ( N e. NN -> ( N - 1 ) e. CC ) |
74 |
|
divdir |
|- ( ( ( N - 1 ) e. CC /\ 1 e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
75 |
69 74
|
mp3an2 |
|- ( ( ( N - 1 ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
76 |
73 12 13 75
|
syl12anc |
|- ( N e. NN -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
77 |
12 13
|
dividd |
|- ( N e. NN -> ( N / N ) = 1 ) |
78 |
72 76 77
|
3eqtr3d |
|- ( N e. NN -> ( ( ( N - 1 ) / N ) + ( 1 / N ) ) = 1 ) |
79 |
78
|
adantl |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( N - 1 ) / N ) + ( 1 / N ) ) = 1 ) |
80 |
68 79
|
breqtrd |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) |
81 |
29
|
flcld |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. ZZ ) |
82 |
33 36
|
readdcld |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) e. RR ) |
83 |
|
flbi2 |
|- ( ( ( |_ ` ( ( |_ ` A ) / N ) ) e. ZZ /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) e. RR ) -> ( ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) <-> ( 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) ) ) |
84 |
81 82 83
|
syl2anc |
|- ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) <-> ( 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) ) ) |
85 |
49 80 84
|
mpbir2and |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) ) |
86 |
40 85
|
eqtr2d |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) = ( |_ ` ( A / N ) ) ) |