| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( |_ ` A ) = ( |_ ` A ) | 
						
							| 2 |  | eqid |  |-  ( A - ( |_ ` A ) ) = ( A - ( |_ ` A ) ) | 
						
							| 3 | 1 2 | intfrac2 |  |-  ( A e. RR -> ( 0 <_ ( A - ( |_ ` A ) ) /\ ( A - ( |_ ` A ) ) < 1 /\ A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) ) | 
						
							| 4 | 3 | simp3d |  |-  ( A e. RR -> A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. RR /\ N e. NN ) -> A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) | 
						
							| 6 | 5 | oveq1d |  |-  ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) ) | 
						
							| 7 |  | reflcl |  |-  ( A e. RR -> ( |_ ` A ) e. RR ) | 
						
							| 8 | 7 | recnd |  |-  ( A e. RR -> ( |_ ` A ) e. CC ) | 
						
							| 9 |  | resubcl |  |-  ( ( A e. RR /\ ( |_ ` A ) e. RR ) -> ( A - ( |_ ` A ) ) e. RR ) | 
						
							| 10 | 7 9 | mpdan |  |-  ( A e. RR -> ( A - ( |_ ` A ) ) e. RR ) | 
						
							| 11 | 10 | recnd |  |-  ( A e. RR -> ( A - ( |_ ` A ) ) e. CC ) | 
						
							| 12 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 13 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 14 | 12 13 | jca |  |-  ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) | 
						
							| 15 |  | divdir |  |-  ( ( ( |_ ` A ) e. CC /\ ( A - ( |_ ` A ) ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) | 
						
							| 16 | 8 11 14 15 | syl2an3an |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) | 
						
							| 17 | 6 16 | eqtrd |  |-  ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) | 
						
							| 18 |  | flcl |  |-  ( A e. RR -> ( |_ ` A ) e. ZZ ) | 
						
							| 19 |  | eqid |  |-  ( |_ ` ( ( |_ ` A ) / N ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) | 
						
							| 20 |  | eqid |  |-  ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) = ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) | 
						
							| 21 | 19 20 | intfracq |  |-  ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) /\ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) ) | 
						
							| 22 | 21 | simp3d |  |-  ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) | 
						
							| 23 | 18 22 | sylan |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) | 
						
							| 24 | 23 | oveq1d |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) = ( ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) | 
						
							| 25 | 7 | adantr |  |-  ( ( A e. RR /\ N e. NN ) -> ( |_ ` A ) e. RR ) | 
						
							| 26 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 27 | 26 | adantl |  |-  ( ( A e. RR /\ N e. NN ) -> N e. RR ) | 
						
							| 28 | 13 | adantl |  |-  ( ( A e. RR /\ N e. NN ) -> N =/= 0 ) | 
						
							| 29 | 25 27 28 | redivcld |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` A ) / N ) e. RR ) | 
						
							| 30 |  | reflcl |  |-  ( ( ( |_ ` A ) / N ) e. RR -> ( |_ ` ( ( |_ ` A ) / N ) ) e. RR ) | 
						
							| 31 | 29 30 | syl |  |-  ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. RR ) | 
						
							| 32 | 31 | recnd |  |-  ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. CC ) | 
						
							| 33 | 29 31 | resubcld |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR ) | 
						
							| 34 | 33 | recnd |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. CC ) | 
						
							| 35 | 10 | adantr |  |-  ( ( A e. RR /\ N e. NN ) -> ( A - ( |_ ` A ) ) e. RR ) | 
						
							| 36 | 35 27 28 | redivcld |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) e. CC ) | 
						
							| 38 | 32 34 37 | addassd |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) | 
						
							| 39 | 17 24 38 | 3eqtrd |  |-  ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( A / N ) ) = ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) ) | 
						
							| 41 | 21 | simp1d |  |-  ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) | 
						
							| 42 | 18 41 | sylan |  |-  ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) | 
						
							| 43 |  | fracge0 |  |-  ( A e. RR -> 0 <_ ( A - ( |_ ` A ) ) ) | 
						
							| 44 | 10 43 | jca |  |-  ( A e. RR -> ( ( A - ( |_ ` A ) ) e. RR /\ 0 <_ ( A - ( |_ ` A ) ) ) ) | 
						
							| 45 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 46 | 26 45 | jca |  |-  ( N e. NN -> ( N e. RR /\ 0 < N ) ) | 
						
							| 47 |  | divge0 |  |-  ( ( ( ( A - ( |_ ` A ) ) e. RR /\ 0 <_ ( A - ( |_ ` A ) ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( A - ( |_ ` A ) ) / N ) ) | 
						
							| 48 | 44 46 47 | syl2an |  |-  ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( A - ( |_ ` A ) ) / N ) ) | 
						
							| 49 | 33 36 42 48 | addge0d |  |-  ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) | 
						
							| 50 |  | peano2rem |  |-  ( N e. RR -> ( N - 1 ) e. RR ) | 
						
							| 51 | 26 50 | syl |  |-  ( N e. NN -> ( N - 1 ) e. RR ) | 
						
							| 52 | 51 26 13 | redivcld |  |-  ( N e. NN -> ( ( N - 1 ) / N ) e. RR ) | 
						
							| 53 |  | nnrecre |  |-  ( N e. NN -> ( 1 / N ) e. RR ) | 
						
							| 54 | 52 53 | jca |  |-  ( N e. NN -> ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) | 
						
							| 55 | 54 | adantl |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) | 
						
							| 56 | 33 36 55 | jca31 |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR /\ ( ( A - ( |_ ` A ) ) / N ) e. RR ) /\ ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) ) | 
						
							| 57 | 21 | simp2d |  |-  ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) ) | 
						
							| 58 | 18 57 | sylan |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) ) | 
						
							| 59 |  | fraclt1 |  |-  ( A e. RR -> ( A - ( |_ ` A ) ) < 1 ) | 
						
							| 60 | 59 | adantr |  |-  ( ( A e. RR /\ N e. NN ) -> ( A - ( |_ ` A ) ) < 1 ) | 
						
							| 61 |  | 1re |  |-  1 e. RR | 
						
							| 62 |  | ltdiv1 |  |-  ( ( ( A - ( |_ ` A ) ) e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) | 
						
							| 63 | 61 62 | mp3an2 |  |-  ( ( ( A - ( |_ ` A ) ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) | 
						
							| 64 | 10 46 63 | syl2an |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) | 
						
							| 65 | 60 64 | mpbid |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) | 
						
							| 66 | 58 65 | jca |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) | 
						
							| 67 |  | leltadd |  |-  ( ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR /\ ( ( A - ( |_ ` A ) ) / N ) e. RR ) /\ ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) -> ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) ) | 
						
							| 68 | 56 66 67 | sylc |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) | 
						
							| 69 |  | ax-1cn |  |-  1 e. CC | 
						
							| 70 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 71 | 12 69 70 | sylancl |  |-  ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 72 | 71 | oveq1d |  |-  ( N e. NN -> ( ( ( N - 1 ) + 1 ) / N ) = ( N / N ) ) | 
						
							| 73 | 51 | recnd |  |-  ( N e. NN -> ( N - 1 ) e. CC ) | 
						
							| 74 |  | divdir |  |-  ( ( ( N - 1 ) e. CC /\ 1 e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) | 
						
							| 75 | 69 74 | mp3an2 |  |-  ( ( ( N - 1 ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) | 
						
							| 76 | 73 12 13 75 | syl12anc |  |-  ( N e. NN -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) | 
						
							| 77 | 12 13 | dividd |  |-  ( N e. NN -> ( N / N ) = 1 ) | 
						
							| 78 | 72 76 77 | 3eqtr3d |  |-  ( N e. NN -> ( ( ( N - 1 ) / N ) + ( 1 / N ) ) = 1 ) | 
						
							| 79 | 78 | adantl |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( N - 1 ) / N ) + ( 1 / N ) ) = 1 ) | 
						
							| 80 | 68 79 | breqtrd |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) | 
						
							| 81 | 29 | flcld |  |-  ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. ZZ ) | 
						
							| 82 | 33 36 | readdcld |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) e. RR ) | 
						
							| 83 |  | flbi2 |  |-  ( ( ( |_ ` ( ( |_ ` A ) / N ) ) e. ZZ /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) e. RR ) -> ( ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) <-> ( 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) ) ) | 
						
							| 84 | 81 82 83 | syl2anc |  |-  ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) <-> ( 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) ) ) | 
						
							| 85 | 49 80 84 | mpbir2and |  |-  ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) ) | 
						
							| 86 | 40 85 | eqtr2d |  |-  ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) = ( |_ ` ( A / N ) ) ) |