| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( |_ ` A ) = ( |_ ` A ) |
| 2 |
|
eqid |
|- ( A - ( |_ ` A ) ) = ( A - ( |_ ` A ) ) |
| 3 |
1 2
|
intfrac2 |
|- ( A e. RR -> ( 0 <_ ( A - ( |_ ` A ) ) /\ ( A - ( |_ ` A ) ) < 1 /\ A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) ) |
| 4 |
3
|
simp3d |
|- ( A e. RR -> A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) |
| 5 |
4
|
adantr |
|- ( ( A e. RR /\ N e. NN ) -> A = ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) ) |
| 6 |
5
|
oveq1d |
|- ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) ) |
| 7 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
| 8 |
7
|
recnd |
|- ( A e. RR -> ( |_ ` A ) e. CC ) |
| 9 |
|
resubcl |
|- ( ( A e. RR /\ ( |_ ` A ) e. RR ) -> ( A - ( |_ ` A ) ) e. RR ) |
| 10 |
7 9
|
mpdan |
|- ( A e. RR -> ( A - ( |_ ` A ) ) e. RR ) |
| 11 |
10
|
recnd |
|- ( A e. RR -> ( A - ( |_ ` A ) ) e. CC ) |
| 12 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 13 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 14 |
12 13
|
jca |
|- ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) |
| 15 |
|
divdir |
|- ( ( ( |_ ` A ) e. CC /\ ( A - ( |_ ` A ) ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
| 16 |
8 11 14 15
|
syl2an3an |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) + ( A - ( |_ ` A ) ) ) / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
| 17 |
6 16
|
eqtrd |
|- ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
| 18 |
|
flcl |
|- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
| 19 |
|
eqid |
|- ( |_ ` ( ( |_ ` A ) / N ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) |
| 20 |
|
eqid |
|- ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) = ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) |
| 21 |
19 20
|
intfracq |
|- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) /\ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) ) |
| 22 |
21
|
simp3d |
|- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) |
| 23 |
18 22
|
sylan |
|- ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` A ) / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) ) |
| 24 |
23
|
oveq1d |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) + ( ( A - ( |_ ` A ) ) / N ) ) = ( ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
| 25 |
7
|
adantr |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` A ) e. RR ) |
| 26 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
| 27 |
26
|
adantl |
|- ( ( A e. RR /\ N e. NN ) -> N e. RR ) |
| 28 |
13
|
adantl |
|- ( ( A e. RR /\ N e. NN ) -> N =/= 0 ) |
| 29 |
25 27 28
|
redivcld |
|- ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` A ) / N ) e. RR ) |
| 30 |
|
reflcl |
|- ( ( ( |_ ` A ) / N ) e. RR -> ( |_ ` ( ( |_ ` A ) / N ) ) e. RR ) |
| 31 |
29 30
|
syl |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. RR ) |
| 32 |
31
|
recnd |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. CC ) |
| 33 |
29 31
|
resubcld |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR ) |
| 34 |
33
|
recnd |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. CC ) |
| 35 |
10
|
adantr |
|- ( ( A e. RR /\ N e. NN ) -> ( A - ( |_ ` A ) ) e. RR ) |
| 36 |
35 27 28
|
redivcld |
|- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) e. RR ) |
| 37 |
36
|
recnd |
|- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) e. CC ) |
| 38 |
32 34 37
|
addassd |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) |
| 39 |
17 24 38
|
3eqtrd |
|- ( ( A e. RR /\ N e. NN ) -> ( A / N ) = ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) |
| 40 |
39
|
fveq2d |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( A / N ) ) = ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) ) |
| 41 |
21
|
simp1d |
|- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) |
| 42 |
18 41
|
sylan |
|- ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) ) |
| 43 |
|
fracge0 |
|- ( A e. RR -> 0 <_ ( A - ( |_ ` A ) ) ) |
| 44 |
10 43
|
jca |
|- ( A e. RR -> ( ( A - ( |_ ` A ) ) e. RR /\ 0 <_ ( A - ( |_ ` A ) ) ) ) |
| 45 |
|
nngt0 |
|- ( N e. NN -> 0 < N ) |
| 46 |
26 45
|
jca |
|- ( N e. NN -> ( N e. RR /\ 0 < N ) ) |
| 47 |
|
divge0 |
|- ( ( ( ( A - ( |_ ` A ) ) e. RR /\ 0 <_ ( A - ( |_ ` A ) ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( A - ( |_ ` A ) ) / N ) ) |
| 48 |
44 46 47
|
syl2an |
|- ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( A - ( |_ ` A ) ) / N ) ) |
| 49 |
33 36 42 48
|
addge0d |
|- ( ( A e. RR /\ N e. NN ) -> 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) |
| 50 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
| 51 |
26 50
|
syl |
|- ( N e. NN -> ( N - 1 ) e. RR ) |
| 52 |
51 26 13
|
redivcld |
|- ( N e. NN -> ( ( N - 1 ) / N ) e. RR ) |
| 53 |
|
nnrecre |
|- ( N e. NN -> ( 1 / N ) e. RR ) |
| 54 |
52 53
|
jca |
|- ( N e. NN -> ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) |
| 55 |
54
|
adantl |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) |
| 56 |
33 36 55
|
jca31 |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR /\ ( ( A - ( |_ ` A ) ) / N ) e. RR ) /\ ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) ) |
| 57 |
21
|
simp2d |
|- ( ( ( |_ ` A ) e. ZZ /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) ) |
| 58 |
18 57
|
sylan |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) ) |
| 59 |
|
fraclt1 |
|- ( A e. RR -> ( A - ( |_ ` A ) ) < 1 ) |
| 60 |
59
|
adantr |
|- ( ( A e. RR /\ N e. NN ) -> ( A - ( |_ ` A ) ) < 1 ) |
| 61 |
|
1re |
|- 1 e. RR |
| 62 |
|
ltdiv1 |
|- ( ( ( A - ( |_ ` A ) ) e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
| 63 |
61 62
|
mp3an2 |
|- ( ( ( A - ( |_ ` A ) ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
| 64 |
10 46 63
|
syl2an |
|- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) < 1 <-> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
| 65 |
60 64
|
mpbid |
|- ( ( A e. RR /\ N e. NN ) -> ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) |
| 66 |
58 65
|
jca |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) ) |
| 67 |
|
leltadd |
|- ( ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) e. RR /\ ( ( A - ( |_ ` A ) ) / N ) e. RR ) /\ ( ( ( N - 1 ) / N ) e. RR /\ ( 1 / N ) e. RR ) ) -> ( ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) <_ ( ( N - 1 ) / N ) /\ ( ( A - ( |_ ` A ) ) / N ) < ( 1 / N ) ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) ) |
| 68 |
56 66 67
|
sylc |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
| 69 |
|
ax-1cn |
|- 1 e. CC |
| 70 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 71 |
12 69 70
|
sylancl |
|- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 72 |
71
|
oveq1d |
|- ( N e. NN -> ( ( ( N - 1 ) + 1 ) / N ) = ( N / N ) ) |
| 73 |
51
|
recnd |
|- ( N e. NN -> ( N - 1 ) e. CC ) |
| 74 |
|
divdir |
|- ( ( ( N - 1 ) e. CC /\ 1 e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
| 75 |
69 74
|
mp3an2 |
|- ( ( ( N - 1 ) e. CC /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
| 76 |
73 12 13 75
|
syl12anc |
|- ( N e. NN -> ( ( ( N - 1 ) + 1 ) / N ) = ( ( ( N - 1 ) / N ) + ( 1 / N ) ) ) |
| 77 |
12 13
|
dividd |
|- ( N e. NN -> ( N / N ) = 1 ) |
| 78 |
72 76 77
|
3eqtr3d |
|- ( N e. NN -> ( ( ( N - 1 ) / N ) + ( 1 / N ) ) = 1 ) |
| 79 |
78
|
adantl |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( N - 1 ) / N ) + ( 1 / N ) ) = 1 ) |
| 80 |
68 79
|
breqtrd |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) |
| 81 |
29
|
flcld |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) e. ZZ ) |
| 82 |
33 36
|
readdcld |
|- ( ( A e. RR /\ N e. NN ) -> ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) e. RR ) |
| 83 |
|
flbi2 |
|- ( ( ( |_ ` ( ( |_ ` A ) / N ) ) e. ZZ /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) e. RR ) -> ( ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) <-> ( 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) ) ) |
| 84 |
81 82 83
|
syl2anc |
|- ( ( A e. RR /\ N e. NN ) -> ( ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) <-> ( 0 <_ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) /\ ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) < 1 ) ) ) |
| 85 |
49 80 84
|
mpbir2and |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` ( ( |_ ` A ) / N ) ) + ( ( ( ( |_ ` A ) / N ) - ( |_ ` ( ( |_ ` A ) / N ) ) ) + ( ( A - ( |_ ` A ) ) / N ) ) ) ) = ( |_ ` ( ( |_ ` A ) / N ) ) ) |
| 86 |
40 85
|
eqtr2d |
|- ( ( A e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / N ) ) = ( |_ ` ( A / N ) ) ) |