| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nndivre |
|- ( ( A e. RR /\ M e. NN ) -> ( A / M ) e. RR ) |
| 2 |
|
fldiv |
|- ( ( ( A / M ) e. RR /\ N e. NN ) -> ( |_ ` ( ( |_ ` ( A / M ) ) / N ) ) = ( |_ ` ( ( A / M ) / N ) ) ) |
| 3 |
1 2
|
stoic3 |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( |_ ` ( A / M ) ) / N ) ) = ( |_ ` ( ( A / M ) / N ) ) ) |
| 4 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 5 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
| 6 |
|
nnne0 |
|- ( M e. NN -> M =/= 0 ) |
| 7 |
5 6
|
jca |
|- ( M e. NN -> ( M e. CC /\ M =/= 0 ) ) |
| 8 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 9 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 10 |
8 9
|
jca |
|- ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) |
| 11 |
|
divdiv1 |
|- ( ( A e. CC /\ ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( A / M ) / N ) = ( A / ( M x. N ) ) ) |
| 12 |
4 7 10 11
|
syl3an |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( ( A / M ) / N ) = ( A / ( M x. N ) ) ) |
| 13 |
12
|
fveq2d |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( A / M ) / N ) ) = ( |_ ` ( A / ( M x. N ) ) ) ) |
| 14 |
3 13
|
eqtrd |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( |_ ` ( A / M ) ) / N ) ) = ( |_ ` ( A / ( M x. N ) ) ) ) |