Step |
Hyp |
Ref |
Expression |
1 |
|
elnn1uz2 |
|- ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) |
2 |
|
1lt4 |
|- 1 < 4 |
3 |
|
1nn0 |
|- 1 e. NN0 |
4 |
|
4nn |
|- 4 e. NN |
5 |
|
divfl0 |
|- ( ( 1 e. NN0 /\ 4 e. NN ) -> ( 1 < 4 <-> ( |_ ` ( 1 / 4 ) ) = 0 ) ) |
6 |
3 4 5
|
mp2an |
|- ( 1 < 4 <-> ( |_ ` ( 1 / 4 ) ) = 0 ) |
7 |
2 6
|
mpbi |
|- ( |_ ` ( 1 / 4 ) ) = 0 |
8 |
|
1re |
|- 1 e. RR |
9 |
|
4re |
|- 4 e. RR |
10 |
|
4ne0 |
|- 4 =/= 0 |
11 |
|
redivcl |
|- ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( 1 / 4 ) e. RR ) |
12 |
11
|
flcld |
|- ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( |_ ` ( 1 / 4 ) ) e. ZZ ) |
13 |
12
|
zred |
|- ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( |_ ` ( 1 / 4 ) ) e. RR ) |
14 |
8 9 10 13
|
mp3an |
|- ( |_ ` ( 1 / 4 ) ) e. RR |
15 |
14
|
eqlei |
|- ( ( |_ ` ( 1 / 4 ) ) = 0 -> ( |_ ` ( 1 / 4 ) ) <_ 0 ) |
16 |
7 15
|
mp1i |
|- ( N = 1 -> ( |_ ` ( 1 / 4 ) ) <_ 0 ) |
17 |
|
fvoveq1 |
|- ( N = 1 -> ( |_ ` ( N / 4 ) ) = ( |_ ` ( 1 / 4 ) ) ) |
18 |
|
oveq1 |
|- ( N = 1 -> ( N - 1 ) = ( 1 - 1 ) ) |
19 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
20 |
18 19
|
eqtrdi |
|- ( N = 1 -> ( N - 1 ) = 0 ) |
21 |
20
|
oveq1d |
|- ( N = 1 -> ( ( N - 1 ) / 2 ) = ( 0 / 2 ) ) |
22 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
23 |
|
div0 |
|- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( 0 / 2 ) = 0 ) |
24 |
22 23
|
ax-mp |
|- ( 0 / 2 ) = 0 |
25 |
21 24
|
eqtrdi |
|- ( N = 1 -> ( ( N - 1 ) / 2 ) = 0 ) |
26 |
16 17 25
|
3brtr4d |
|- ( N = 1 -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |
27 |
|
fldiv4lem1div2uz2 |
|- ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |
28 |
26 27
|
jaoi |
|- ( ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |
29 |
1 28
|
sylbi |
|- ( N e. NN -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |