| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn1uz2 |  |-  ( N e. NN <-> ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) ) | 
						
							| 2 |  | 1lt4 |  |-  1 < 4 | 
						
							| 3 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 4 |  | 4nn |  |-  4 e. NN | 
						
							| 5 |  | divfl0 |  |-  ( ( 1 e. NN0 /\ 4 e. NN ) -> ( 1 < 4 <-> ( |_ ` ( 1 / 4 ) ) = 0 ) ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  ( 1 < 4 <-> ( |_ ` ( 1 / 4 ) ) = 0 ) | 
						
							| 7 | 2 6 | mpbi |  |-  ( |_ ` ( 1 / 4 ) ) = 0 | 
						
							| 8 |  | 1re |  |-  1 e. RR | 
						
							| 9 |  | 4re |  |-  4 e. RR | 
						
							| 10 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 11 |  | redivcl |  |-  ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( 1 / 4 ) e. RR ) | 
						
							| 12 | 11 | flcld |  |-  ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( |_ ` ( 1 / 4 ) ) e. ZZ ) | 
						
							| 13 | 12 | zred |  |-  ( ( 1 e. RR /\ 4 e. RR /\ 4 =/= 0 ) -> ( |_ ` ( 1 / 4 ) ) e. RR ) | 
						
							| 14 | 8 9 10 13 | mp3an |  |-  ( |_ ` ( 1 / 4 ) ) e. RR | 
						
							| 15 | 14 | eqlei |  |-  ( ( |_ ` ( 1 / 4 ) ) = 0 -> ( |_ ` ( 1 / 4 ) ) <_ 0 ) | 
						
							| 16 | 7 15 | mp1i |  |-  ( N = 1 -> ( |_ ` ( 1 / 4 ) ) <_ 0 ) | 
						
							| 17 |  | fvoveq1 |  |-  ( N = 1 -> ( |_ ` ( N / 4 ) ) = ( |_ ` ( 1 / 4 ) ) ) | 
						
							| 18 |  | oveq1 |  |-  ( N = 1 -> ( N - 1 ) = ( 1 - 1 ) ) | 
						
							| 19 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( N = 1 -> ( N - 1 ) = 0 ) | 
						
							| 21 | 20 | oveq1d |  |-  ( N = 1 -> ( ( N - 1 ) / 2 ) = ( 0 / 2 ) ) | 
						
							| 22 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 23 |  | div0 |  |-  ( ( 2 e. CC /\ 2 =/= 0 ) -> ( 0 / 2 ) = 0 ) | 
						
							| 24 | 22 23 | ax-mp |  |-  ( 0 / 2 ) = 0 | 
						
							| 25 | 21 24 | eqtrdi |  |-  ( N = 1 -> ( ( N - 1 ) / 2 ) = 0 ) | 
						
							| 26 | 16 17 25 | 3brtr4d |  |-  ( N = 1 -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) | 
						
							| 27 |  | fldiv4lem1div2uz2 |  |-  ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) | 
						
							| 28 | 26 27 | jaoi |  |-  ( ( N = 1 \/ N e. ( ZZ>= ` 2 ) ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) | 
						
							| 29 | 1 28 | sylbi |  |-  ( N e. NN -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |