| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelz |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. ZZ ) | 
						
							| 2 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 3 |  | id |  |-  ( N e. RR -> N e. RR ) | 
						
							| 4 |  | 4re |  |-  4 e. RR | 
						
							| 5 | 4 | a1i |  |-  ( N e. RR -> 4 e. RR ) | 
						
							| 6 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 7 | 6 | a1i |  |-  ( N e. RR -> 4 =/= 0 ) | 
						
							| 8 | 3 5 7 | redivcld |  |-  ( N e. RR -> ( N / 4 ) e. RR ) | 
						
							| 9 |  | flle |  |-  ( ( N / 4 ) e. RR -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) | 
						
							| 10 | 1 2 8 9 | 4syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) | 
						
							| 11 |  | 1red |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 e. RR ) | 
						
							| 12 |  | eluzelre |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. RR ) | 
						
							| 13 |  | rehalfcl |  |-  ( N e. RR -> ( N / 2 ) e. RR ) | 
						
							| 14 | 1 2 13 | 3syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) e. RR ) | 
						
							| 15 |  | 2rp |  |-  2 e. RR+ | 
						
							| 16 | 15 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. RR+ ) | 
						
							| 17 |  | eluzle |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) | 
						
							| 18 |  | divge1 |  |-  ( ( 2 e. RR+ /\ N e. RR /\ 2 <_ N ) -> 1 <_ ( N / 2 ) ) | 
						
							| 19 | 16 12 17 18 | syl3anc |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 <_ ( N / 2 ) ) | 
						
							| 20 |  | eluzelcn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. CC ) | 
						
							| 21 |  | subhalfhalf |  |-  ( N e. CC -> ( N - ( N / 2 ) ) = ( N / 2 ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - ( N / 2 ) ) = ( N / 2 ) ) | 
						
							| 23 | 19 22 | breqtrrd |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 <_ ( N - ( N / 2 ) ) ) | 
						
							| 24 | 11 12 14 23 | lesubd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) <_ ( N - 1 ) ) | 
						
							| 25 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 26 | 25 | eqcomi |  |-  4 = ( 2 x. 2 ) | 
						
							| 27 | 26 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 4 = ( 2 x. 2 ) ) | 
						
							| 28 | 27 | oveq2d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N / 4 ) = ( N / ( 2 x. 2 ) ) ) | 
						
							| 29 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 30 | 29 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 31 |  | divdiv1 |  |-  ( ( N e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) | 
						
							| 32 | 20 30 30 31 | syl3anc |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) | 
						
							| 33 | 28 32 | eqtr4d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N / 4 ) = ( ( N / 2 ) / 2 ) ) | 
						
							| 34 | 33 | breq1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N / 4 ) <_ ( ( N - 1 ) / 2 ) <-> ( ( N / 2 ) / 2 ) <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 35 |  | peano2rem |  |-  ( N e. RR -> ( N - 1 ) e. RR ) | 
						
							| 36 | 12 35 | syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. RR ) | 
						
							| 37 | 14 36 16 | lediv1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) <_ ( N - 1 ) <-> ( ( N / 2 ) / 2 ) <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 38 | 34 37 | bitr4d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N / 4 ) <_ ( ( N - 1 ) / 2 ) <-> ( N / 2 ) <_ ( N - 1 ) ) ) | 
						
							| 39 | 24 38 | mpbird |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N / 4 ) <_ ( ( N - 1 ) / 2 ) ) | 
						
							| 40 | 8 | flcld |  |-  ( N e. RR -> ( |_ ` ( N / 4 ) ) e. ZZ ) | 
						
							| 41 | 40 | zred |  |-  ( N e. RR -> ( |_ ` ( N / 4 ) ) e. RR ) | 
						
							| 42 | 35 | rehalfcld |  |-  ( N e. RR -> ( ( N - 1 ) / 2 ) e. RR ) | 
						
							| 43 | 41 8 42 | 3jca |  |-  ( N e. RR -> ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) ) | 
						
							| 44 |  | letr |  |-  ( ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) -> ( ( ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) /\ ( N / 4 ) <_ ( ( N - 1 ) / 2 ) ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 45 | 1 2 43 44 | 4syl |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) /\ ( N / 4 ) <_ ( ( N - 1 ) / 2 ) ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) ) | 
						
							| 46 | 10 39 45 | mp2and |  |-  ( N e. ( ZZ>= ` 2 ) -> ( |_ ` ( N / 4 ) ) <_ ( ( N - 1 ) / 2 ) ) |