| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1le1 |
|- 1 <_ 1 |
| 2 |
1
|
a1i |
|- ( N = 3 -> 1 <_ 1 ) |
| 3 |
|
fvoveq1 |
|- ( N = 3 -> ( |_ ` ( N / 4 ) ) = ( |_ ` ( 3 / 4 ) ) ) |
| 4 |
|
3lt4 |
|- 3 < 4 |
| 5 |
|
3nn0 |
|- 3 e. NN0 |
| 6 |
|
4nn |
|- 4 e. NN |
| 7 |
|
divfl0 |
|- ( ( 3 e. NN0 /\ 4 e. NN ) -> ( 3 < 4 <-> ( |_ ` ( 3 / 4 ) ) = 0 ) ) |
| 8 |
5 6 7
|
mp2an |
|- ( 3 < 4 <-> ( |_ ` ( 3 / 4 ) ) = 0 ) |
| 9 |
4 8
|
mpbi |
|- ( |_ ` ( 3 / 4 ) ) = 0 |
| 10 |
3 9
|
eqtrdi |
|- ( N = 3 -> ( |_ ` ( N / 4 ) ) = 0 ) |
| 11 |
10
|
oveq1d |
|- ( N = 3 -> ( ( |_ ` ( N / 4 ) ) + 1 ) = ( 0 + 1 ) ) |
| 12 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 13 |
11 12
|
eqtrdi |
|- ( N = 3 -> ( ( |_ ` ( N / 4 ) ) + 1 ) = 1 ) |
| 14 |
|
oveq1 |
|- ( N = 3 -> ( N - 1 ) = ( 3 - 1 ) ) |
| 15 |
|
3m1e2 |
|- ( 3 - 1 ) = 2 |
| 16 |
14 15
|
eqtrdi |
|- ( N = 3 -> ( N - 1 ) = 2 ) |
| 17 |
16
|
oveq1d |
|- ( N = 3 -> ( ( N - 1 ) / 2 ) = ( 2 / 2 ) ) |
| 18 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
| 19 |
17 18
|
eqtrdi |
|- ( N = 3 -> ( ( N - 1 ) / 2 ) = 1 ) |
| 20 |
2 13 19
|
3brtr4d |
|- ( N = 3 -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 21 |
|
uzp1 |
|- ( N e. ( ZZ>= ` 5 ) -> ( N = 5 \/ N e. ( ZZ>= ` ( 5 + 1 ) ) ) ) |
| 22 |
|
2re |
|- 2 e. RR |
| 23 |
22
|
leidi |
|- 2 <_ 2 |
| 24 |
23
|
a1i |
|- ( N = 5 -> 2 <_ 2 ) |
| 25 |
|
fvoveq1 |
|- ( N = 5 -> ( |_ ` ( N / 4 ) ) = ( |_ ` ( 5 / 4 ) ) ) |
| 26 |
|
df-5 |
|- 5 = ( 4 + 1 ) |
| 27 |
26
|
oveq1i |
|- ( 5 / 4 ) = ( ( 4 + 1 ) / 4 ) |
| 28 |
|
4cn |
|- 4 e. CC |
| 29 |
|
ax-1cn |
|- 1 e. CC |
| 30 |
|
4ne0 |
|- 4 =/= 0 |
| 31 |
28 29 28 30
|
divdiri |
|- ( ( 4 + 1 ) / 4 ) = ( ( 4 / 4 ) + ( 1 / 4 ) ) |
| 32 |
28 30
|
dividi |
|- ( 4 / 4 ) = 1 |
| 33 |
32
|
oveq1i |
|- ( ( 4 / 4 ) + ( 1 / 4 ) ) = ( 1 + ( 1 / 4 ) ) |
| 34 |
27 31 33
|
3eqtri |
|- ( 5 / 4 ) = ( 1 + ( 1 / 4 ) ) |
| 35 |
34
|
fveq2i |
|- ( |_ ` ( 5 / 4 ) ) = ( |_ ` ( 1 + ( 1 / 4 ) ) ) |
| 36 |
|
1re |
|- 1 e. RR |
| 37 |
|
0le1 |
|- 0 <_ 1 |
| 38 |
|
4re |
|- 4 e. RR |
| 39 |
|
4pos |
|- 0 < 4 |
| 40 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( 4 e. RR /\ 0 < 4 ) ) -> 0 <_ ( 1 / 4 ) ) |
| 41 |
36 37 38 39 40
|
mp4an |
|- 0 <_ ( 1 / 4 ) |
| 42 |
|
1lt4 |
|- 1 < 4 |
| 43 |
|
recgt1 |
|- ( ( 4 e. RR /\ 0 < 4 ) -> ( 1 < 4 <-> ( 1 / 4 ) < 1 ) ) |
| 44 |
38 39 43
|
mp2an |
|- ( 1 < 4 <-> ( 1 / 4 ) < 1 ) |
| 45 |
42 44
|
mpbi |
|- ( 1 / 4 ) < 1 |
| 46 |
|
1z |
|- 1 e. ZZ |
| 47 |
38 30
|
rereccli |
|- ( 1 / 4 ) e. RR |
| 48 |
|
flbi2 |
|- ( ( 1 e. ZZ /\ ( 1 / 4 ) e. RR ) -> ( ( |_ ` ( 1 + ( 1 / 4 ) ) ) = 1 <-> ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) ) ) |
| 49 |
46 47 48
|
mp2an |
|- ( ( |_ ` ( 1 + ( 1 / 4 ) ) ) = 1 <-> ( 0 <_ ( 1 / 4 ) /\ ( 1 / 4 ) < 1 ) ) |
| 50 |
41 45 49
|
mpbir2an |
|- ( |_ ` ( 1 + ( 1 / 4 ) ) ) = 1 |
| 51 |
35 50
|
eqtri |
|- ( |_ ` ( 5 / 4 ) ) = 1 |
| 52 |
25 51
|
eqtrdi |
|- ( N = 5 -> ( |_ ` ( N / 4 ) ) = 1 ) |
| 53 |
52
|
oveq1d |
|- ( N = 5 -> ( ( |_ ` ( N / 4 ) ) + 1 ) = ( 1 + 1 ) ) |
| 54 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
| 55 |
53 54
|
eqtrdi |
|- ( N = 5 -> ( ( |_ ` ( N / 4 ) ) + 1 ) = 2 ) |
| 56 |
|
oveq1 |
|- ( N = 5 -> ( N - 1 ) = ( 5 - 1 ) ) |
| 57 |
|
5m1e4 |
|- ( 5 - 1 ) = 4 |
| 58 |
56 57
|
eqtrdi |
|- ( N = 5 -> ( N - 1 ) = 4 ) |
| 59 |
58
|
oveq1d |
|- ( N = 5 -> ( ( N - 1 ) / 2 ) = ( 4 / 2 ) ) |
| 60 |
|
4d2e2 |
|- ( 4 / 2 ) = 2 |
| 61 |
59 60
|
eqtrdi |
|- ( N = 5 -> ( ( N - 1 ) / 2 ) = 2 ) |
| 62 |
24 55 61
|
3brtr4d |
|- ( N = 5 -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 63 |
|
eluz2 |
|- ( N e. ( ZZ>= ` 6 ) <-> ( 6 e. ZZ /\ N e. ZZ /\ 6 <_ N ) ) |
| 64 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
| 65 |
|
id |
|- ( N e. RR -> N e. RR ) |
| 66 |
38
|
a1i |
|- ( N e. RR -> 4 e. RR ) |
| 67 |
30
|
a1i |
|- ( N e. RR -> 4 =/= 0 ) |
| 68 |
65 66 67
|
redivcld |
|- ( N e. RR -> ( N / 4 ) e. RR ) |
| 69 |
|
flle |
|- ( ( N / 4 ) e. RR -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) |
| 70 |
64 68 69
|
3syl |
|- ( N e. ZZ -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) |
| 71 |
70
|
adantr |
|- ( ( N e. ZZ /\ 6 <_ N ) -> ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) ) |
| 72 |
68
|
flcld |
|- ( N e. RR -> ( |_ ` ( N / 4 ) ) e. ZZ ) |
| 73 |
72
|
zred |
|- ( N e. RR -> ( |_ ` ( N / 4 ) ) e. RR ) |
| 74 |
36
|
a1i |
|- ( N e. RR -> 1 e. RR ) |
| 75 |
73 68 74
|
3jca |
|- ( N e. RR -> ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ 1 e. RR ) ) |
| 76 |
64 75
|
syl |
|- ( N e. ZZ -> ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ 1 e. RR ) ) |
| 77 |
76
|
adantr |
|- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ 1 e. RR ) ) |
| 78 |
|
leadd1 |
|- ( ( ( |_ ` ( N / 4 ) ) e. RR /\ ( N / 4 ) e. RR /\ 1 e. RR ) -> ( ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) <-> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) ) ) |
| 79 |
77 78
|
syl |
|- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) <_ ( N / 4 ) <-> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) ) ) |
| 80 |
71 79
|
mpbid |
|- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) ) |
| 81 |
|
div4p1lem1div2 |
|- ( ( N e. RR /\ 6 <_ N ) -> ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 82 |
64 81
|
sylan |
|- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 83 |
|
peano2re |
|- ( ( |_ ` ( N / 4 ) ) e. RR -> ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR ) |
| 84 |
73 83
|
syl |
|- ( N e. RR -> ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR ) |
| 85 |
|
peano2re |
|- ( ( N / 4 ) e. RR -> ( ( N / 4 ) + 1 ) e. RR ) |
| 86 |
68 85
|
syl |
|- ( N e. RR -> ( ( N / 4 ) + 1 ) e. RR ) |
| 87 |
|
peano2rem |
|- ( N e. RR -> ( N - 1 ) e. RR ) |
| 88 |
87
|
rehalfcld |
|- ( N e. RR -> ( ( N - 1 ) / 2 ) e. RR ) |
| 89 |
84 86 88
|
3jca |
|- ( N e. RR -> ( ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR /\ ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) ) |
| 90 |
64 89
|
syl |
|- ( N e. ZZ -> ( ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR /\ ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) ) |
| 91 |
90
|
adantr |
|- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR /\ ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) ) |
| 92 |
|
letr |
|- ( ( ( ( |_ ` ( N / 4 ) ) + 1 ) e. RR /\ ( ( N / 4 ) + 1 ) e. RR /\ ( ( N - 1 ) / 2 ) e. RR ) -> ( ( ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) /\ ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) ) |
| 93 |
91 92
|
syl |
|- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N / 4 ) + 1 ) /\ ( ( N / 4 ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) ) |
| 94 |
80 82 93
|
mp2and |
|- ( ( N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 95 |
94
|
3adant1 |
|- ( ( 6 e. ZZ /\ N e. ZZ /\ 6 <_ N ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 96 |
63 95
|
sylbi |
|- ( N e. ( ZZ>= ` 6 ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 97 |
|
5p1e6 |
|- ( 5 + 1 ) = 6 |
| 98 |
97
|
fveq2i |
|- ( ZZ>= ` ( 5 + 1 ) ) = ( ZZ>= ` 6 ) |
| 99 |
96 98
|
eleq2s |
|- ( N e. ( ZZ>= ` ( 5 + 1 ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 100 |
62 99
|
jaoi |
|- ( ( N = 5 \/ N e. ( ZZ>= ` ( 5 + 1 ) ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 101 |
21 100
|
syl |
|- ( N e. ( ZZ>= ` 5 ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |
| 102 |
20 101
|
jaoi |
|- ( ( N = 3 \/ N e. ( ZZ>= ` 5 ) ) -> ( ( |_ ` ( N / 4 ) ) + 1 ) <_ ( ( N - 1 ) / 2 ) ) |