Metamath Proof Explorer


Theorem fldivle

Description: The floor function of a division of a real number by a positive real number is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion fldivle
|- ( ( K e. RR /\ L e. RR+ ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) )

Proof

Step Hyp Ref Expression
1 rerpdivcl
 |-  ( ( K e. RR /\ L e. RR+ ) -> ( K / L ) e. RR )
2 fllelt
 |-  ( ( K / L ) e. RR -> ( ( |_ ` ( K / L ) ) <_ ( K / L ) /\ ( K / L ) < ( ( |_ ` ( K / L ) ) + 1 ) ) )
3 simpl
 |-  ( ( ( |_ ` ( K / L ) ) <_ ( K / L ) /\ ( K / L ) < ( ( |_ ` ( K / L ) ) + 1 ) ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) )
4 1 2 3 3syl
 |-  ( ( K e. RR /\ L e. RR+ ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) )