| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( K e. ZZ -> K e. RR ) | 
						
							| 2 | 1 | adantr |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> K e. RR ) | 
						
							| 3 |  | zre |  |-  ( L e. ZZ -> L e. RR ) | 
						
							| 4 | 3 | ad2antrl |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> L e. RR ) | 
						
							| 5 |  | simprr |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> L =/= 0 ) | 
						
							| 6 | 2 4 5 | redivcld |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> ( K / L ) e. RR ) | 
						
							| 7 | 6 | 3adant3 |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) /\ -. L || K ) -> ( K / L ) e. RR ) | 
						
							| 8 |  | simprl |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> L e. ZZ ) | 
						
							| 9 |  | simpl |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> K e. ZZ ) | 
						
							| 10 |  | dvdsval2 |  |-  ( ( L e. ZZ /\ L =/= 0 /\ K e. ZZ ) -> ( L || K <-> ( K / L ) e. ZZ ) ) | 
						
							| 11 | 8 5 9 10 | syl3anc |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> ( L || K <-> ( K / L ) e. ZZ ) ) | 
						
							| 12 | 11 | notbid |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> ( -. L || K <-> -. ( K / L ) e. ZZ ) ) | 
						
							| 13 | 12 | biimp3a |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) /\ -. L || K ) -> -. ( K / L ) e. ZZ ) | 
						
							| 14 |  | flltnz |  |-  ( ( ( K / L ) e. RR /\ -. ( K / L ) e. ZZ ) -> ( |_ ` ( K / L ) ) < ( K / L ) ) | 
						
							| 15 | 7 13 14 | syl2anc |  |-  ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) /\ -. L || K ) -> ( |_ ` ( K / L ) ) < ( K / L ) ) |