Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( K e. ZZ -> K e. RR ) |
2 |
1
|
adantr |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> K e. RR ) |
3 |
|
zre |
|- ( L e. ZZ -> L e. RR ) |
4 |
3
|
ad2antrl |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> L e. RR ) |
5 |
|
simprr |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> L =/= 0 ) |
6 |
2 4 5
|
redivcld |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> ( K / L ) e. RR ) |
7 |
6
|
3adant3 |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) /\ -. L || K ) -> ( K / L ) e. RR ) |
8 |
|
simprl |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> L e. ZZ ) |
9 |
|
simpl |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> K e. ZZ ) |
10 |
|
dvdsval2 |
|- ( ( L e. ZZ /\ L =/= 0 /\ K e. ZZ ) -> ( L || K <-> ( K / L ) e. ZZ ) ) |
11 |
8 5 9 10
|
syl3anc |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> ( L || K <-> ( K / L ) e. ZZ ) ) |
12 |
11
|
notbid |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) ) -> ( -. L || K <-> -. ( K / L ) e. ZZ ) ) |
13 |
12
|
biimp3a |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) /\ -. L || K ) -> -. ( K / L ) e. ZZ ) |
14 |
|
flltnz |
|- ( ( ( K / L ) e. RR /\ -. ( K / L ) e. ZZ ) -> ( |_ ` ( K / L ) ) < ( K / L ) ) |
15 |
7 13 14
|
syl2anc |
|- ( ( K e. ZZ /\ ( L e. ZZ /\ L =/= 0 ) /\ -. L || K ) -> ( |_ ` ( K / L ) ) < ( K / L ) ) |