Metamath Proof Explorer


Theorem fldivnn0

Description: The floor function of a division of a nonnegative integer by a positive integer is a nonnegative integer. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion fldivnn0
|- ( ( K e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) e. NN0 )

Proof

Step Hyp Ref Expression
1 nn0nndivcl
 |-  ( ( K e. NN0 /\ L e. NN ) -> ( K / L ) e. RR )
2 nn0ge0div
 |-  ( ( K e. NN0 /\ L e. NN ) -> 0 <_ ( K / L ) )
3 flge0nn0
 |-  ( ( ( K / L ) e. RR /\ 0 <_ ( K / L ) ) -> ( |_ ` ( K / L ) ) e. NN0 )
4 1 2 3 syl2anc
 |-  ( ( K e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) e. NN0 )