Metamath Proof Explorer


Theorem fldivnn0le

Description: The floor function of a division of a nonnegative integer by a positive integer is less than or equal to the division. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion fldivnn0le
|- ( ( K e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) )

Proof

Step Hyp Ref Expression
1 nn0re
 |-  ( K e. NN0 -> K e. RR )
2 nnrp
 |-  ( L e. NN -> L e. RR+ )
3 fldivle
 |-  ( ( K e. RR /\ L e. RR+ ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) )
4 1 2 3 syl2an
 |-  ( ( K e. NN0 /\ L e. NN ) -> ( |_ ` ( K / L ) ) <_ ( K / L ) )