Metamath Proof Explorer


Theorem fldsdrgfld

Description: A sub-division-ring of a field is itself a field, so it is a subfield. We can therefore use SubDRing to express subfields. (Contributed by Thierry Arnoux, 11-Jan-2025)

Ref Expression
Assertion fldsdrgfld
|- ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. Field )

Proof

Step Hyp Ref Expression
1 issdrg
 |-  ( A e. ( SubDRing ` F ) <-> ( F e. DivRing /\ A e. ( SubRing ` F ) /\ ( F |`s A ) e. DivRing ) )
2 1 simp3bi
 |-  ( A e. ( SubDRing ` F ) -> ( F |`s A ) e. DivRing )
3 2 adantl
 |-  ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. DivRing )
4 isfld
 |-  ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) )
5 4 simprbi
 |-  ( F e. Field -> F e. CRing )
6 1 simp2bi
 |-  ( A e. ( SubDRing ` F ) -> A e. ( SubRing ` F ) )
7 eqid
 |-  ( F |`s A ) = ( F |`s A )
8 7 subrgcrng
 |-  ( ( F e. CRing /\ A e. ( SubRing ` F ) ) -> ( F |`s A ) e. CRing )
9 5 6 8 syl2an
 |-  ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. CRing )
10 isfld
 |-  ( ( F |`s A ) e. Field <-> ( ( F |`s A ) e. DivRing /\ ( F |`s A ) e. CRing ) )
11 3 9 10 sylanbrc
 |-  ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. Field )