Step |
Hyp |
Ref |
Expression |
1 |
|
issdrg |
|- ( A e. ( SubDRing ` F ) <-> ( F e. DivRing /\ A e. ( SubRing ` F ) /\ ( F |`s A ) e. DivRing ) ) |
2 |
1
|
simp3bi |
|- ( A e. ( SubDRing ` F ) -> ( F |`s A ) e. DivRing ) |
3 |
2
|
adantl |
|- ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. DivRing ) |
4 |
|
isfld |
|- ( F e. Field <-> ( F e. DivRing /\ F e. CRing ) ) |
5 |
4
|
simprbi |
|- ( F e. Field -> F e. CRing ) |
6 |
1
|
simp2bi |
|- ( A e. ( SubDRing ` F ) -> A e. ( SubRing ` F ) ) |
7 |
|
eqid |
|- ( F |`s A ) = ( F |`s A ) |
8 |
7
|
subrgcrng |
|- ( ( F e. CRing /\ A e. ( SubRing ` F ) ) -> ( F |`s A ) e. CRing ) |
9 |
5 6 8
|
syl2an |
|- ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. CRing ) |
10 |
|
isfld |
|- ( ( F |`s A ) e. Field <-> ( ( F |`s A ) e. DivRing /\ ( F |`s A ) e. CRing ) ) |
11 |
3 9 10
|
sylanbrc |
|- ( ( F e. Field /\ A e. ( SubDRing ` F ) ) -> ( F |`s A ) e. Field ) |