Step |
Hyp |
Ref |
Expression |
1 |
|
flid |
|- ( A e. ZZ -> ( |_ ` A ) = A ) |
2 |
|
ceilid |
|- ( A e. ZZ -> ( |^ ` A ) = A ) |
3 |
1 2
|
eqtr4d |
|- ( A e. ZZ -> ( |_ ` A ) = ( |^ ` A ) ) |
4 |
|
eqeq1 |
|- ( ( |_ ` A ) = A -> ( ( |_ ` A ) = ( |^ ` A ) <-> A = ( |^ ` A ) ) ) |
5 |
4
|
adantr |
|- ( ( ( |_ ` A ) = A /\ A e. RR ) -> ( ( |_ ` A ) = ( |^ ` A ) <-> A = ( |^ ` A ) ) ) |
6 |
|
ceilidz |
|- ( A e. RR -> ( A e. ZZ <-> ( |^ ` A ) = A ) ) |
7 |
|
eqcom |
|- ( ( |^ ` A ) = A <-> A = ( |^ ` A ) ) |
8 |
6 7
|
bitrdi |
|- ( A e. RR -> ( A e. ZZ <-> A = ( |^ ` A ) ) ) |
9 |
8
|
biimprd |
|- ( A e. RR -> ( A = ( |^ ` A ) -> A e. ZZ ) ) |
10 |
9
|
adantl |
|- ( ( ( |_ ` A ) = A /\ A e. RR ) -> ( A = ( |^ ` A ) -> A e. ZZ ) ) |
11 |
5 10
|
sylbid |
|- ( ( ( |_ ` A ) = A /\ A e. RR ) -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) |
12 |
11
|
ex |
|- ( ( |_ ` A ) = A -> ( A e. RR -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) |
13 |
|
flle |
|- ( A e. RR -> ( |_ ` A ) <_ A ) |
14 |
|
df-ne |
|- ( ( |_ ` A ) =/= A <-> -. ( |_ ` A ) = A ) |
15 |
|
necom |
|- ( ( |_ ` A ) =/= A <-> A =/= ( |_ ` A ) ) |
16 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
17 |
|
id |
|- ( A e. RR -> A e. RR ) |
18 |
16 17
|
ltlend |
|- ( A e. RR -> ( ( |_ ` A ) < A <-> ( ( |_ ` A ) <_ A /\ A =/= ( |_ ` A ) ) ) ) |
19 |
|
breq1 |
|- ( ( |_ ` A ) = ( |^ ` A ) -> ( ( |_ ` A ) < A <-> ( |^ ` A ) < A ) ) |
20 |
19
|
adantl |
|- ( ( A e. RR /\ ( |_ ` A ) = ( |^ ` A ) ) -> ( ( |_ ` A ) < A <-> ( |^ ` A ) < A ) ) |
21 |
|
ceilge |
|- ( A e. RR -> A <_ ( |^ ` A ) ) |
22 |
|
ceilcl |
|- ( A e. RR -> ( |^ ` A ) e. ZZ ) |
23 |
22
|
zred |
|- ( A e. RR -> ( |^ ` A ) e. RR ) |
24 |
17 23
|
lenltd |
|- ( A e. RR -> ( A <_ ( |^ ` A ) <-> -. ( |^ ` A ) < A ) ) |
25 |
|
pm2.21 |
|- ( -. ( |^ ` A ) < A -> ( ( |^ ` A ) < A -> A e. ZZ ) ) |
26 |
24 25
|
syl6bi |
|- ( A e. RR -> ( A <_ ( |^ ` A ) -> ( ( |^ ` A ) < A -> A e. ZZ ) ) ) |
27 |
21 26
|
mpd |
|- ( A e. RR -> ( ( |^ ` A ) < A -> A e. ZZ ) ) |
28 |
27
|
adantr |
|- ( ( A e. RR /\ ( |_ ` A ) = ( |^ ` A ) ) -> ( ( |^ ` A ) < A -> A e. ZZ ) ) |
29 |
20 28
|
sylbid |
|- ( ( A e. RR /\ ( |_ ` A ) = ( |^ ` A ) ) -> ( ( |_ ` A ) < A -> A e. ZZ ) ) |
30 |
29
|
ex |
|- ( A e. RR -> ( ( |_ ` A ) = ( |^ ` A ) -> ( ( |_ ` A ) < A -> A e. ZZ ) ) ) |
31 |
30
|
com23 |
|- ( A e. RR -> ( ( |_ ` A ) < A -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) |
32 |
18 31
|
sylbird |
|- ( A e. RR -> ( ( ( |_ ` A ) <_ A /\ A =/= ( |_ ` A ) ) -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) |
33 |
32
|
expd |
|- ( A e. RR -> ( ( |_ ` A ) <_ A -> ( A =/= ( |_ ` A ) -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) ) |
34 |
33
|
com3r |
|- ( A =/= ( |_ ` A ) -> ( A e. RR -> ( ( |_ ` A ) <_ A -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) ) |
35 |
15 34
|
sylbi |
|- ( ( |_ ` A ) =/= A -> ( A e. RR -> ( ( |_ ` A ) <_ A -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) ) |
36 |
14 35
|
sylbir |
|- ( -. ( |_ ` A ) = A -> ( A e. RR -> ( ( |_ ` A ) <_ A -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) ) |
37 |
13 36
|
mpdi |
|- ( -. ( |_ ` A ) = A -> ( A e. RR -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) ) |
38 |
12 37
|
pm2.61i |
|- ( A e. RR -> ( ( |_ ` A ) = ( |^ ` A ) -> A e. ZZ ) ) |
39 |
3 38
|
impbid2 |
|- ( A e. RR -> ( A e. ZZ <-> ( |_ ` A ) = ( |^ ` A ) ) ) |