Metamath Proof Explorer


Theorem flge1nn

Description: The floor of a number greater than or equal to 1 is a positive integer. (Contributed by NM, 26-Apr-2005)

Ref Expression
Assertion flge1nn
|- ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) e. NN )

Proof

Step Hyp Ref Expression
1 flcl
 |-  ( A e. RR -> ( |_ ` A ) e. ZZ )
2 1 adantr
 |-  ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) e. ZZ )
3 1z
 |-  1 e. ZZ
4 flge
 |-  ( ( A e. RR /\ 1 e. ZZ ) -> ( 1 <_ A <-> 1 <_ ( |_ ` A ) ) )
5 3 4 mpan2
 |-  ( A e. RR -> ( 1 <_ A <-> 1 <_ ( |_ ` A ) ) )
6 5 biimpa
 |-  ( ( A e. RR /\ 1 <_ A ) -> 1 <_ ( |_ ` A ) )
7 elnnz1
 |-  ( ( |_ ` A ) e. NN <-> ( ( |_ ` A ) e. ZZ /\ 1 <_ ( |_ ` A ) ) )
8 2 6 7 sylanbrc
 |-  ( ( A e. RR /\ 1 <_ A ) -> ( |_ ` A ) e. NN )