Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
2 |
|
peano2re |
|- ( N e. RR -> ( N + 1 ) e. RR ) |
3 |
1 2
|
syl |
|- ( N e. ZZ -> ( N + 1 ) e. RR ) |
4 |
3
|
rehalfcld |
|- ( N e. ZZ -> ( ( N + 1 ) / 2 ) e. RR ) |
5 |
|
flltp1 |
|- ( ( ( N + 1 ) / 2 ) e. RR -> ( ( N + 1 ) / 2 ) < ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) |
6 |
4 5
|
syl |
|- ( N e. ZZ -> ( ( N + 1 ) / 2 ) < ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) |
7 |
4
|
flcld |
|- ( N e. ZZ -> ( |_ ` ( ( N + 1 ) / 2 ) ) e. ZZ ) |
8 |
7
|
zred |
|- ( N e. ZZ -> ( |_ ` ( ( N + 1 ) / 2 ) ) e. RR ) |
9 |
|
1red |
|- ( N e. ZZ -> 1 e. RR ) |
10 |
8 9
|
readdcld |
|- ( N e. ZZ -> ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) e. RR ) |
11 |
|
2rp |
|- 2 e. RR+ |
12 |
11
|
a1i |
|- ( N e. ZZ -> 2 e. RR+ ) |
13 |
3 10 12
|
ltdivmuld |
|- ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) < ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) <-> ( N + 1 ) < ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) ) ) |
14 |
6 13
|
mpbid |
|- ( N e. ZZ -> ( N + 1 ) < ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) ) |
15 |
9
|
recnd |
|- ( N e. ZZ -> 1 e. CC ) |
16 |
15
|
2timesd |
|- ( N e. ZZ -> ( 2 x. 1 ) = ( 1 + 1 ) ) |
17 |
16
|
oveq2d |
|- ( N e. ZZ -> ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 2 x. 1 ) ) = ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 1 + 1 ) ) ) |
18 |
|
2cnd |
|- ( N e. ZZ -> 2 e. CC ) |
19 |
8
|
recnd |
|- ( N e. ZZ -> ( |_ ` ( ( N + 1 ) / 2 ) ) e. CC ) |
20 |
18 19 15
|
adddid |
|- ( N e. ZZ -> ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) = ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 2 x. 1 ) ) ) |
21 |
|
2re |
|- 2 e. RR |
22 |
21
|
a1i |
|- ( N e. ZZ -> 2 e. RR ) |
23 |
22 8
|
remulcld |
|- ( N e. ZZ -> ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. RR ) |
24 |
23
|
recnd |
|- ( N e. ZZ -> ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. CC ) |
25 |
24 15 15
|
addassd |
|- ( N e. ZZ -> ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) = ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 1 + 1 ) ) ) |
26 |
17 20 25
|
3eqtr4d |
|- ( N e. ZZ -> ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) = ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) ) |
27 |
14 26
|
breqtrd |
|- ( N e. ZZ -> ( N + 1 ) < ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) ) |
28 |
23 9
|
readdcld |
|- ( N e. ZZ -> ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) e. RR ) |
29 |
1 28 9
|
ltadd1d |
|- ( N e. ZZ -> ( N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) <-> ( N + 1 ) < ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) ) ) |
30 |
27 29
|
mpbird |
|- ( N e. ZZ -> N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) ) |
31 |
|
2z |
|- 2 e. ZZ |
32 |
31
|
a1i |
|- ( N e. ZZ -> 2 e. ZZ ) |
33 |
32 7
|
zmulcld |
|- ( N e. ZZ -> ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. ZZ ) |
34 |
|
zleltp1 |
|- ( ( N e. ZZ /\ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. ZZ ) -> ( N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) <-> N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) ) ) |
35 |
33 34
|
mpdan |
|- ( N e. ZZ -> ( N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) <-> N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) ) ) |
36 |
30 35
|
mpbird |
|- ( N e. ZZ -> N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) ) |