| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 2 |  | peano2re |  |-  ( N e. RR -> ( N + 1 ) e. RR ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. ZZ -> ( N + 1 ) e. RR ) | 
						
							| 4 | 3 | rehalfcld |  |-  ( N e. ZZ -> ( ( N + 1 ) / 2 ) e. RR ) | 
						
							| 5 |  | flltp1 |  |-  ( ( ( N + 1 ) / 2 ) e. RR -> ( ( N + 1 ) / 2 ) < ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( N e. ZZ -> ( ( N + 1 ) / 2 ) < ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) | 
						
							| 7 | 4 | flcld |  |-  ( N e. ZZ -> ( |_ ` ( ( N + 1 ) / 2 ) ) e. ZZ ) | 
						
							| 8 | 7 | zred |  |-  ( N e. ZZ -> ( |_ ` ( ( N + 1 ) / 2 ) ) e. RR ) | 
						
							| 9 |  | 1red |  |-  ( N e. ZZ -> 1 e. RR ) | 
						
							| 10 | 8 9 | readdcld |  |-  ( N e. ZZ -> ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) e. RR ) | 
						
							| 11 |  | 2rp |  |-  2 e. RR+ | 
						
							| 12 | 11 | a1i |  |-  ( N e. ZZ -> 2 e. RR+ ) | 
						
							| 13 | 3 10 12 | ltdivmuld |  |-  ( N e. ZZ -> ( ( ( N + 1 ) / 2 ) < ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) <-> ( N + 1 ) < ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) ) ) | 
						
							| 14 | 6 13 | mpbid |  |-  ( N e. ZZ -> ( N + 1 ) < ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) ) | 
						
							| 15 | 9 | recnd |  |-  ( N e. ZZ -> 1 e. CC ) | 
						
							| 16 | 15 | 2timesd |  |-  ( N e. ZZ -> ( 2 x. 1 ) = ( 1 + 1 ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( N e. ZZ -> ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 2 x. 1 ) ) = ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 1 + 1 ) ) ) | 
						
							| 18 |  | 2cnd |  |-  ( N e. ZZ -> 2 e. CC ) | 
						
							| 19 | 8 | recnd |  |-  ( N e. ZZ -> ( |_ ` ( ( N + 1 ) / 2 ) ) e. CC ) | 
						
							| 20 | 18 19 15 | adddid |  |-  ( N e. ZZ -> ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) = ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 2 x. 1 ) ) ) | 
						
							| 21 |  | 2re |  |-  2 e. RR | 
						
							| 22 | 21 | a1i |  |-  ( N e. ZZ -> 2 e. RR ) | 
						
							| 23 | 22 8 | remulcld |  |-  ( N e. ZZ -> ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. RR ) | 
						
							| 24 | 23 | recnd |  |-  ( N e. ZZ -> ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. CC ) | 
						
							| 25 | 24 15 15 | addassd |  |-  ( N e. ZZ -> ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) = ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + ( 1 + 1 ) ) ) | 
						
							| 26 | 17 20 25 | 3eqtr4d |  |-  ( N e. ZZ -> ( 2 x. ( ( |_ ` ( ( N + 1 ) / 2 ) ) + 1 ) ) = ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) ) | 
						
							| 27 | 14 26 | breqtrd |  |-  ( N e. ZZ -> ( N + 1 ) < ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) ) | 
						
							| 28 | 23 9 | readdcld |  |-  ( N e. ZZ -> ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) e. RR ) | 
						
							| 29 | 1 28 9 | ltadd1d |  |-  ( N e. ZZ -> ( N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) <-> ( N + 1 ) < ( ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) + 1 ) ) ) | 
						
							| 30 | 27 29 | mpbird |  |-  ( N e. ZZ -> N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) ) | 
						
							| 31 |  | 2z |  |-  2 e. ZZ | 
						
							| 32 | 31 | a1i |  |-  ( N e. ZZ -> 2 e. ZZ ) | 
						
							| 33 | 32 7 | zmulcld |  |-  ( N e. ZZ -> ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. ZZ ) | 
						
							| 34 |  | zleltp1 |  |-  ( ( N e. ZZ /\ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) e. ZZ ) -> ( N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) <-> N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) ) ) | 
						
							| 35 | 33 34 | mpdan |  |-  ( N e. ZZ -> ( N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) <-> N < ( ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) + 1 ) ) ) | 
						
							| 36 | 30 35 | mpbird |  |-  ( N e. ZZ -> N <_ ( 2 x. ( |_ ` ( ( N + 1 ) / 2 ) ) ) ) |