Metamath Proof Explorer


Theorem flid

Description: An integer is its own floor. (Contributed by NM, 15-Nov-2004)

Ref Expression
Assertion flid
|- ( A e. ZZ -> ( |_ ` A ) = A )

Proof

Step Hyp Ref Expression
1 zre
 |-  ( A e. ZZ -> A e. RR )
2 flle
 |-  ( A e. RR -> ( |_ ` A ) <_ A )
3 1 2 syl
 |-  ( A e. ZZ -> ( |_ ` A ) <_ A )
4 1 leidd
 |-  ( A e. ZZ -> A <_ A )
5 flge
 |-  ( ( A e. RR /\ A e. ZZ ) -> ( A <_ A <-> A <_ ( |_ ` A ) ) )
6 1 5 mpancom
 |-  ( A e. ZZ -> ( A <_ A <-> A <_ ( |_ ` A ) ) )
7 4 6 mpbid
 |-  ( A e. ZZ -> A <_ ( |_ ` A ) )
8 reflcl
 |-  ( A e. RR -> ( |_ ` A ) e. RR )
9 1 8 syl
 |-  ( A e. ZZ -> ( |_ ` A ) e. RR )
10 9 1 letri3d
 |-  ( A e. ZZ -> ( ( |_ ` A ) = A <-> ( ( |_ ` A ) <_ A /\ A <_ ( |_ ` A ) ) ) )
11 3 7 10 mpbir2and
 |-  ( A e. ZZ -> ( |_ ` A ) = A )