Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( A e. ZZ -> A e. RR ) |
2 |
|
flle |
|- ( A e. RR -> ( |_ ` A ) <_ A ) |
3 |
1 2
|
syl |
|- ( A e. ZZ -> ( |_ ` A ) <_ A ) |
4 |
1
|
leidd |
|- ( A e. ZZ -> A <_ A ) |
5 |
|
flge |
|- ( ( A e. RR /\ A e. ZZ ) -> ( A <_ A <-> A <_ ( |_ ` A ) ) ) |
6 |
1 5
|
mpancom |
|- ( A e. ZZ -> ( A <_ A <-> A <_ ( |_ ` A ) ) ) |
7 |
4 6
|
mpbid |
|- ( A e. ZZ -> A <_ ( |_ ` A ) ) |
8 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
9 |
1 8
|
syl |
|- ( A e. ZZ -> ( |_ ` A ) e. RR ) |
10 |
9 1
|
letri3d |
|- ( A e. ZZ -> ( ( |_ ` A ) = A <-> ( ( |_ ` A ) <_ A /\ A <_ ( |_ ` A ) ) ) ) |
11 |
3 7 10
|
mpbir2and |
|- ( A e. ZZ -> ( |_ ` A ) = A ) |