Metamath Proof Explorer


Theorem flidz

Description: A real number equals its floor iff it is an integer. (Contributed by NM, 11-Nov-2008)

Ref Expression
Assertion flidz
|- ( A e. RR -> ( ( |_ ` A ) = A <-> A e. ZZ ) )

Proof

Step Hyp Ref Expression
1 flcl
 |-  ( A e. RR -> ( |_ ` A ) e. ZZ )
2 eleq1
 |-  ( ( |_ ` A ) = A -> ( ( |_ ` A ) e. ZZ <-> A e. ZZ ) )
3 1 2 syl5ibcom
 |-  ( A e. RR -> ( ( |_ ` A ) = A -> A e. ZZ ) )
4 flid
 |-  ( A e. ZZ -> ( |_ ` A ) = A )
5 3 4 impbid1
 |-  ( A e. RR -> ( ( |_ ` A ) = A <-> A e. ZZ ) )