Step |
Hyp |
Ref |
Expression |
1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
4 |
|
df-br |
|- ( C F D <-> <. C , D >. e. F ) |
5 |
1
|
eleq2i |
|- ( <. C , D >. e. F <-> <. C , D >. e. ran ( x e. X |-> <. A , B >. ) ) |
6 |
|
eqid |
|- ( x e. X |-> <. A , B >. ) = ( x e. X |-> <. A , B >. ) |
7 |
|
opex |
|- <. A , B >. e. _V |
8 |
6 7
|
elrnmpti |
|- ( <. C , D >. e. ran ( x e. X |-> <. A , B >. ) <-> E. x e. X <. C , D >. = <. A , B >. ) |
9 |
4 5 8
|
3bitri |
|- ( C F D <-> E. x e. X <. C , D >. = <. A , B >. ) |
10 |
|
opthg2 |
|- ( ( A e. R /\ B e. S ) -> ( <. C , D >. = <. A , B >. <-> ( C = A /\ D = B ) ) ) |
11 |
2 3 10
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( <. C , D >. = <. A , B >. <-> ( C = A /\ D = B ) ) ) |
12 |
11
|
rexbidva |
|- ( ph -> ( E. x e. X <. C , D >. = <. A , B >. <-> E. x e. X ( C = A /\ D = B ) ) ) |
13 |
9 12
|
syl5bb |
|- ( ph -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |