| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flift.1 |  |-  F = ran ( x e. X |-> <. A , B >. ) | 
						
							| 2 |  | flift.2 |  |-  ( ( ph /\ x e. X ) -> A e. R ) | 
						
							| 3 |  | flift.3 |  |-  ( ( ph /\ x e. X ) -> B e. S ) | 
						
							| 4 |  | df-br |  |-  ( C F D <-> <. C , D >. e. F ) | 
						
							| 5 | 1 | eleq2i |  |-  ( <. C , D >. e. F <-> <. C , D >. e. ran ( x e. X |-> <. A , B >. ) ) | 
						
							| 6 |  | eqid |  |-  ( x e. X |-> <. A , B >. ) = ( x e. X |-> <. A , B >. ) | 
						
							| 7 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 8 | 6 7 | elrnmpti |  |-  ( <. C , D >. e. ran ( x e. X |-> <. A , B >. ) <-> E. x e. X <. C , D >. = <. A , B >. ) | 
						
							| 9 | 4 5 8 | 3bitri |  |-  ( C F D <-> E. x e. X <. C , D >. = <. A , B >. ) | 
						
							| 10 |  | opthg2 |  |-  ( ( A e. R /\ B e. S ) -> ( <. C , D >. = <. A , B >. <-> ( C = A /\ D = B ) ) ) | 
						
							| 11 | 2 3 10 | syl2anc |  |-  ( ( ph /\ x e. X ) -> ( <. C , D >. = <. A , B >. <-> ( C = A /\ D = B ) ) ) | 
						
							| 12 | 11 | rexbidva |  |-  ( ph -> ( E. x e. X <. C , D >. = <. A , B >. <-> E. x e. X ( C = A /\ D = B ) ) ) | 
						
							| 13 | 9 12 | bitrid |  |-  ( ph -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |