Metamath Proof Explorer


Theorem fliftel1

Description: Elementhood in the relation F . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1
|- F = ran ( x e. X |-> <. A , B >. )
flift.2
|- ( ( ph /\ x e. X ) -> A e. R )
flift.3
|- ( ( ph /\ x e. X ) -> B e. S )
Assertion fliftel1
|- ( ( ph /\ x e. X ) -> A F B )

Proof

Step Hyp Ref Expression
1 flift.1
 |-  F = ran ( x e. X |-> <. A , B >. )
2 flift.2
 |-  ( ( ph /\ x e. X ) -> A e. R )
3 flift.3
 |-  ( ( ph /\ x e. X ) -> B e. S )
4 opex
 |-  <. A , B >. e. _V
5 eqid
 |-  ( x e. X |-> <. A , B >. ) = ( x e. X |-> <. A , B >. )
6 5 elrnmpt1
 |-  ( ( x e. X /\ <. A , B >. e. _V ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) )
7 4 6 mpan2
 |-  ( x e. X -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) )
8 7 adantl
 |-  ( ( ph /\ x e. X ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) )
9 8 1 eleqtrrdi
 |-  ( ( ph /\ x e. X ) -> <. A , B >. e. F )
10 df-br
 |-  ( A F B <-> <. A , B >. e. F )
11 9 10 sylibr
 |-  ( ( ph /\ x e. X ) -> A F B )