| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flift.1 |  |-  F = ran ( x e. X |-> <. A , B >. ) | 
						
							| 2 |  | flift.2 |  |-  ( ( ph /\ x e. X ) -> A e. R ) | 
						
							| 3 |  | flift.3 |  |-  ( ( ph /\ x e. X ) -> B e. S ) | 
						
							| 4 |  | opex |  |-  <. A , B >. e. _V | 
						
							| 5 |  | eqid |  |-  ( x e. X |-> <. A , B >. ) = ( x e. X |-> <. A , B >. ) | 
						
							| 6 | 5 | elrnmpt1 |  |-  ( ( x e. X /\ <. A , B >. e. _V ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) | 
						
							| 7 | 4 6 | mpan2 |  |-  ( x e. X -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ph /\ x e. X ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) | 
						
							| 9 | 8 1 | eleqtrrdi |  |-  ( ( ph /\ x e. X ) -> <. A , B >. e. F ) | 
						
							| 10 |  | df-br |  |-  ( A F B <-> <. A , B >. e. F ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( ph /\ x e. X ) -> A F B ) |