Step |
Hyp |
Ref |
Expression |
1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
4 |
|
opex |
|- <. A , B >. e. _V |
5 |
|
eqid |
|- ( x e. X |-> <. A , B >. ) = ( x e. X |-> <. A , B >. ) |
6 |
5
|
elrnmpt1 |
|- ( ( x e. X /\ <. A , B >. e. _V ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) |
7 |
4 6
|
mpan2 |
|- ( x e. X -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) |
8 |
7
|
adantl |
|- ( ( ph /\ x e. X ) -> <. A , B >. e. ran ( x e. X |-> <. A , B >. ) ) |
9 |
8 1
|
eleqtrrdi |
|- ( ( ph /\ x e. X ) -> <. A , B >. e. F ) |
10 |
|
df-br |
|- ( A F B <-> <. A , B >. e. F ) |
11 |
9 10
|
sylibr |
|- ( ( ph /\ x e. X ) -> A F B ) |