Step |
Hyp |
Ref |
Expression |
1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
4 |
|
simpr |
|- ( ( ph /\ Fun F ) -> Fun F ) |
5 |
1 2 3
|
fliftel |
|- ( ph -> ( y F z <-> E. x e. X ( y = A /\ z = B ) ) ) |
6 |
5
|
exbidv |
|- ( ph -> ( E. z y F z <-> E. z E. x e. X ( y = A /\ z = B ) ) ) |
7 |
6
|
adantr |
|- ( ( ph /\ Fun F ) -> ( E. z y F z <-> E. z E. x e. X ( y = A /\ z = B ) ) ) |
8 |
|
rexcom4 |
|- ( E. x e. X E. z ( y = A /\ z = B ) <-> E. z E. x e. X ( y = A /\ z = B ) ) |
9 |
|
19.42v |
|- ( E. z ( y = A /\ z = B ) <-> ( y = A /\ E. z z = B ) ) |
10 |
|
elisset |
|- ( B e. S -> E. z z = B ) |
11 |
3 10
|
syl |
|- ( ( ph /\ x e. X ) -> E. z z = B ) |
12 |
11
|
biantrud |
|- ( ( ph /\ x e. X ) -> ( y = A <-> ( y = A /\ E. z z = B ) ) ) |
13 |
9 12
|
bitr4id |
|- ( ( ph /\ x e. X ) -> ( E. z ( y = A /\ z = B ) <-> y = A ) ) |
14 |
13
|
rexbidva |
|- ( ph -> ( E. x e. X E. z ( y = A /\ z = B ) <-> E. x e. X y = A ) ) |
15 |
14
|
adantr |
|- ( ( ph /\ Fun F ) -> ( E. x e. X E. z ( y = A /\ z = B ) <-> E. x e. X y = A ) ) |
16 |
8 15
|
bitr3id |
|- ( ( ph /\ Fun F ) -> ( E. z E. x e. X ( y = A /\ z = B ) <-> E. x e. X y = A ) ) |
17 |
7 16
|
bitrd |
|- ( ( ph /\ Fun F ) -> ( E. z y F z <-> E. x e. X y = A ) ) |
18 |
17
|
abbidv |
|- ( ( ph /\ Fun F ) -> { y | E. z y F z } = { y | E. x e. X y = A } ) |
19 |
|
df-dm |
|- dom F = { y | E. z y F z } |
20 |
|
eqid |
|- ( x e. X |-> A ) = ( x e. X |-> A ) |
21 |
20
|
rnmpt |
|- ran ( x e. X |-> A ) = { y | E. x e. X y = A } |
22 |
18 19 21
|
3eqtr4g |
|- ( ( ph /\ Fun F ) -> dom F = ran ( x e. X |-> A ) ) |
23 |
|
df-fn |
|- ( F Fn ran ( x e. X |-> A ) <-> ( Fun F /\ dom F = ran ( x e. X |-> A ) ) ) |
24 |
4 22 23
|
sylanbrc |
|- ( ( ph /\ Fun F ) -> F Fn ran ( x e. X |-> A ) ) |
25 |
1 2 3
|
fliftrel |
|- ( ph -> F C_ ( R X. S ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ Fun F ) -> F C_ ( R X. S ) ) |
27 |
|
rnss |
|- ( F C_ ( R X. S ) -> ran F C_ ran ( R X. S ) ) |
28 |
26 27
|
syl |
|- ( ( ph /\ Fun F ) -> ran F C_ ran ( R X. S ) ) |
29 |
|
rnxpss |
|- ran ( R X. S ) C_ S |
30 |
28 29
|
sstrdi |
|- ( ( ph /\ Fun F ) -> ran F C_ S ) |
31 |
|
df-f |
|- ( F : ran ( x e. X |-> A ) --> S <-> ( F Fn ran ( x e. X |-> A ) /\ ran F C_ S ) ) |
32 |
24 30 31
|
sylanbrc |
|- ( ( ph /\ Fun F ) -> F : ran ( x e. X |-> A ) --> S ) |
33 |
32
|
ex |
|- ( ph -> ( Fun F -> F : ran ( x e. X |-> A ) --> S ) ) |
34 |
|
ffun |
|- ( F : ran ( x e. X |-> A ) --> S -> Fun F ) |
35 |
33 34
|
impbid1 |
|- ( ph -> ( Fun F <-> F : ran ( x e. X |-> A ) --> S ) ) |