| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
| 2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
| 3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
| 4 |
|
fliftfun.4 |
|- ( x = y -> A = C ) |
| 5 |
|
fliftfun.5 |
|- ( x = y -> B = D ) |
| 6 |
|
nfv |
|- F/ x ph |
| 7 |
|
nfmpt1 |
|- F/_ x ( x e. X |-> <. A , B >. ) |
| 8 |
7
|
nfrn |
|- F/_ x ran ( x e. X |-> <. A , B >. ) |
| 9 |
1 8
|
nfcxfr |
|- F/_ x F |
| 10 |
9
|
nffun |
|- F/ x Fun F |
| 11 |
|
fveq2 |
|- ( A = C -> ( F ` A ) = ( F ` C ) ) |
| 12 |
|
simplr |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> Fun F ) |
| 13 |
1 2 3
|
fliftel1 |
|- ( ( ph /\ x e. X ) -> A F B ) |
| 14 |
13
|
ad2ant2r |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> A F B ) |
| 15 |
|
funbrfv |
|- ( Fun F -> ( A F B -> ( F ` A ) = B ) ) |
| 16 |
12 14 15
|
sylc |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( F ` A ) = B ) |
| 17 |
|
simprr |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
| 18 |
|
eqidd |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> C = C ) |
| 19 |
|
eqidd |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> D = D ) |
| 20 |
4
|
eqeq2d |
|- ( x = y -> ( C = A <-> C = C ) ) |
| 21 |
5
|
eqeq2d |
|- ( x = y -> ( D = B <-> D = D ) ) |
| 22 |
20 21
|
anbi12d |
|- ( x = y -> ( ( C = A /\ D = B ) <-> ( C = C /\ D = D ) ) ) |
| 23 |
22
|
rspcev |
|- ( ( y e. X /\ ( C = C /\ D = D ) ) -> E. x e. X ( C = A /\ D = B ) ) |
| 24 |
17 18 19 23
|
syl12anc |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> E. x e. X ( C = A /\ D = B ) ) |
| 25 |
1 2 3
|
fliftel |
|- ( ph -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |
| 26 |
25
|
ad2antrr |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |
| 27 |
24 26
|
mpbird |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> C F D ) |
| 28 |
|
funbrfv |
|- ( Fun F -> ( C F D -> ( F ` C ) = D ) ) |
| 29 |
12 27 28
|
sylc |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( F ` C ) = D ) |
| 30 |
16 29
|
eqeq12d |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` A ) = ( F ` C ) <-> B = D ) ) |
| 31 |
11 30
|
imbitrid |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( A = C -> B = D ) ) |
| 32 |
31
|
anassrs |
|- ( ( ( ( ph /\ Fun F ) /\ x e. X ) /\ y e. X ) -> ( A = C -> B = D ) ) |
| 33 |
32
|
ralrimiva |
|- ( ( ( ph /\ Fun F ) /\ x e. X ) -> A. y e. X ( A = C -> B = D ) ) |
| 34 |
33
|
exp31 |
|- ( ph -> ( Fun F -> ( x e. X -> A. y e. X ( A = C -> B = D ) ) ) ) |
| 35 |
6 10 34
|
ralrimd |
|- ( ph -> ( Fun F -> A. x e. X A. y e. X ( A = C -> B = D ) ) ) |
| 36 |
1 2 3
|
fliftel |
|- ( ph -> ( z F u <-> E. x e. X ( z = A /\ u = B ) ) ) |
| 37 |
1 2 3
|
fliftel |
|- ( ph -> ( z F v <-> E. x e. X ( z = A /\ v = B ) ) ) |
| 38 |
4
|
eqeq2d |
|- ( x = y -> ( z = A <-> z = C ) ) |
| 39 |
5
|
eqeq2d |
|- ( x = y -> ( v = B <-> v = D ) ) |
| 40 |
38 39
|
anbi12d |
|- ( x = y -> ( ( z = A /\ v = B ) <-> ( z = C /\ v = D ) ) ) |
| 41 |
40
|
cbvrexvw |
|- ( E. x e. X ( z = A /\ v = B ) <-> E. y e. X ( z = C /\ v = D ) ) |
| 42 |
37 41
|
bitrdi |
|- ( ph -> ( z F v <-> E. y e. X ( z = C /\ v = D ) ) ) |
| 43 |
36 42
|
anbi12d |
|- ( ph -> ( ( z F u /\ z F v ) <-> ( E. x e. X ( z = A /\ u = B ) /\ E. y e. X ( z = C /\ v = D ) ) ) ) |
| 44 |
43
|
biimpd |
|- ( ph -> ( ( z F u /\ z F v ) -> ( E. x e. X ( z = A /\ u = B ) /\ E. y e. X ( z = C /\ v = D ) ) ) ) |
| 45 |
|
reeanv |
|- ( E. x e. X E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) <-> ( E. x e. X ( z = A /\ u = B ) /\ E. y e. X ( z = C /\ v = D ) ) ) |
| 46 |
|
r19.29 |
|- ( ( A. x e. X A. y e. X ( A = C -> B = D ) /\ E. x e. X E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> E. x e. X ( A. y e. X ( A = C -> B = D ) /\ E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) ) |
| 47 |
|
r19.29 |
|- ( ( A. y e. X ( A = C -> B = D ) /\ E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> E. y e. X ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) ) |
| 48 |
|
eqtr2 |
|- ( ( z = A /\ z = C ) -> A = C ) |
| 49 |
48
|
ad2ant2r |
|- ( ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) -> A = C ) |
| 50 |
49
|
imim1i |
|- ( ( A = C -> B = D ) -> ( ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) -> B = D ) ) |
| 51 |
50
|
imp |
|- ( ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> B = D ) |
| 52 |
|
simprlr |
|- ( ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = B ) |
| 53 |
|
simprrr |
|- ( ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> v = D ) |
| 54 |
51 52 53
|
3eqtr4d |
|- ( ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
| 55 |
54
|
rexlimivw |
|- ( E. y e. X ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
| 56 |
47 55
|
syl |
|- ( ( A. y e. X ( A = C -> B = D ) /\ E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
| 57 |
56
|
rexlimivw |
|- ( E. x e. X ( A. y e. X ( A = C -> B = D ) /\ E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
| 58 |
46 57
|
syl |
|- ( ( A. x e. X A. y e. X ( A = C -> B = D ) /\ E. x e. X E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
| 59 |
58
|
ex |
|- ( A. x e. X A. y e. X ( A = C -> B = D ) -> ( E. x e. X E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) -> u = v ) ) |
| 60 |
45 59
|
biimtrrid |
|- ( A. x e. X A. y e. X ( A = C -> B = D ) -> ( ( E. x e. X ( z = A /\ u = B ) /\ E. y e. X ( z = C /\ v = D ) ) -> u = v ) ) |
| 61 |
44 60
|
syl9 |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> ( ( z F u /\ z F v ) -> u = v ) ) ) |
| 62 |
61
|
alrimdv |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
| 63 |
62
|
alrimdv |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
| 64 |
63
|
alrimdv |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> A. z A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
| 65 |
1 2 3
|
fliftrel |
|- ( ph -> F C_ ( R X. S ) ) |
| 66 |
|
relxp |
|- Rel ( R X. S ) |
| 67 |
|
relss |
|- ( F C_ ( R X. S ) -> ( Rel ( R X. S ) -> Rel F ) ) |
| 68 |
65 66 67
|
mpisyl |
|- ( ph -> Rel F ) |
| 69 |
|
dffun2 |
|- ( Fun F <-> ( Rel F /\ A. z A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
| 70 |
69
|
baib |
|- ( Rel F -> ( Fun F <-> A. z A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
| 71 |
68 70
|
syl |
|- ( ph -> ( Fun F <-> A. z A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
| 72 |
64 71
|
sylibrd |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> Fun F ) ) |
| 73 |
35 72
|
impbid |
|- ( ph -> ( Fun F <-> A. x e. X A. y e. X ( A = C -> B = D ) ) ) |