Step |
Hyp |
Ref |
Expression |
1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
4 |
|
fliftfun.4 |
|- ( x = y -> A = C ) |
5 |
|
fliftfun.5 |
|- ( x = y -> B = D ) |
6 |
|
nfv |
|- F/ x ph |
7 |
|
nfmpt1 |
|- F/_ x ( x e. X |-> <. A , B >. ) |
8 |
7
|
nfrn |
|- F/_ x ran ( x e. X |-> <. A , B >. ) |
9 |
1 8
|
nfcxfr |
|- F/_ x F |
10 |
9
|
nffun |
|- F/ x Fun F |
11 |
|
fveq2 |
|- ( A = C -> ( F ` A ) = ( F ` C ) ) |
12 |
|
simplr |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> Fun F ) |
13 |
1 2 3
|
fliftel1 |
|- ( ( ph /\ x e. X ) -> A F B ) |
14 |
13
|
ad2ant2r |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> A F B ) |
15 |
|
funbrfv |
|- ( Fun F -> ( A F B -> ( F ` A ) = B ) ) |
16 |
12 14 15
|
sylc |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( F ` A ) = B ) |
17 |
|
simprr |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> y e. X ) |
18 |
|
eqidd |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> C = C ) |
19 |
|
eqidd |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> D = D ) |
20 |
4
|
eqeq2d |
|- ( x = y -> ( C = A <-> C = C ) ) |
21 |
5
|
eqeq2d |
|- ( x = y -> ( D = B <-> D = D ) ) |
22 |
20 21
|
anbi12d |
|- ( x = y -> ( ( C = A /\ D = B ) <-> ( C = C /\ D = D ) ) ) |
23 |
22
|
rspcev |
|- ( ( y e. X /\ ( C = C /\ D = D ) ) -> E. x e. X ( C = A /\ D = B ) ) |
24 |
17 18 19 23
|
syl12anc |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> E. x e. X ( C = A /\ D = B ) ) |
25 |
1 2 3
|
fliftel |
|- ( ph -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |
26 |
25
|
ad2antrr |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |
27 |
24 26
|
mpbird |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> C F D ) |
28 |
|
funbrfv |
|- ( Fun F -> ( C F D -> ( F ` C ) = D ) ) |
29 |
12 27 28
|
sylc |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( F ` C ) = D ) |
30 |
16 29
|
eqeq12d |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( ( F ` A ) = ( F ` C ) <-> B = D ) ) |
31 |
11 30
|
syl5ib |
|- ( ( ( ph /\ Fun F ) /\ ( x e. X /\ y e. X ) ) -> ( A = C -> B = D ) ) |
32 |
31
|
anassrs |
|- ( ( ( ( ph /\ Fun F ) /\ x e. X ) /\ y e. X ) -> ( A = C -> B = D ) ) |
33 |
32
|
ralrimiva |
|- ( ( ( ph /\ Fun F ) /\ x e. X ) -> A. y e. X ( A = C -> B = D ) ) |
34 |
33
|
exp31 |
|- ( ph -> ( Fun F -> ( x e. X -> A. y e. X ( A = C -> B = D ) ) ) ) |
35 |
6 10 34
|
ralrimd |
|- ( ph -> ( Fun F -> A. x e. X A. y e. X ( A = C -> B = D ) ) ) |
36 |
1 2 3
|
fliftel |
|- ( ph -> ( z F u <-> E. x e. X ( z = A /\ u = B ) ) ) |
37 |
1 2 3
|
fliftel |
|- ( ph -> ( z F v <-> E. x e. X ( z = A /\ v = B ) ) ) |
38 |
4
|
eqeq2d |
|- ( x = y -> ( z = A <-> z = C ) ) |
39 |
5
|
eqeq2d |
|- ( x = y -> ( v = B <-> v = D ) ) |
40 |
38 39
|
anbi12d |
|- ( x = y -> ( ( z = A /\ v = B ) <-> ( z = C /\ v = D ) ) ) |
41 |
40
|
cbvrexvw |
|- ( E. x e. X ( z = A /\ v = B ) <-> E. y e. X ( z = C /\ v = D ) ) |
42 |
37 41
|
bitrdi |
|- ( ph -> ( z F v <-> E. y e. X ( z = C /\ v = D ) ) ) |
43 |
36 42
|
anbi12d |
|- ( ph -> ( ( z F u /\ z F v ) <-> ( E. x e. X ( z = A /\ u = B ) /\ E. y e. X ( z = C /\ v = D ) ) ) ) |
44 |
43
|
biimpd |
|- ( ph -> ( ( z F u /\ z F v ) -> ( E. x e. X ( z = A /\ u = B ) /\ E. y e. X ( z = C /\ v = D ) ) ) ) |
45 |
|
reeanv |
|- ( E. x e. X E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) <-> ( E. x e. X ( z = A /\ u = B ) /\ E. y e. X ( z = C /\ v = D ) ) ) |
46 |
|
r19.29 |
|- ( ( A. x e. X A. y e. X ( A = C -> B = D ) /\ E. x e. X E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> E. x e. X ( A. y e. X ( A = C -> B = D ) /\ E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) ) |
47 |
|
r19.29 |
|- ( ( A. y e. X ( A = C -> B = D ) /\ E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> E. y e. X ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) ) |
48 |
|
eqtr2 |
|- ( ( z = A /\ z = C ) -> A = C ) |
49 |
48
|
ad2ant2r |
|- ( ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) -> A = C ) |
50 |
49
|
imim1i |
|- ( ( A = C -> B = D ) -> ( ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) -> B = D ) ) |
51 |
50
|
imp |
|- ( ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> B = D ) |
52 |
|
simprlr |
|- ( ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = B ) |
53 |
|
simprrr |
|- ( ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> v = D ) |
54 |
51 52 53
|
3eqtr4d |
|- ( ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
55 |
54
|
rexlimivw |
|- ( E. y e. X ( ( A = C -> B = D ) /\ ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
56 |
47 55
|
syl |
|- ( ( A. y e. X ( A = C -> B = D ) /\ E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
57 |
56
|
rexlimivw |
|- ( E. x e. X ( A. y e. X ( A = C -> B = D ) /\ E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
58 |
46 57
|
syl |
|- ( ( A. x e. X A. y e. X ( A = C -> B = D ) /\ E. x e. X E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) ) -> u = v ) |
59 |
58
|
ex |
|- ( A. x e. X A. y e. X ( A = C -> B = D ) -> ( E. x e. X E. y e. X ( ( z = A /\ u = B ) /\ ( z = C /\ v = D ) ) -> u = v ) ) |
60 |
45 59
|
syl5bir |
|- ( A. x e. X A. y e. X ( A = C -> B = D ) -> ( ( E. x e. X ( z = A /\ u = B ) /\ E. y e. X ( z = C /\ v = D ) ) -> u = v ) ) |
61 |
44 60
|
syl9 |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> ( ( z F u /\ z F v ) -> u = v ) ) ) |
62 |
61
|
alrimdv |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
63 |
62
|
alrimdv |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
64 |
63
|
alrimdv |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> A. z A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
65 |
1 2 3
|
fliftrel |
|- ( ph -> F C_ ( R X. S ) ) |
66 |
|
relxp |
|- Rel ( R X. S ) |
67 |
|
relss |
|- ( F C_ ( R X. S ) -> ( Rel ( R X. S ) -> Rel F ) ) |
68 |
65 66 67
|
mpisyl |
|- ( ph -> Rel F ) |
69 |
|
dffun2 |
|- ( Fun F <-> ( Rel F /\ A. z A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
70 |
69
|
baib |
|- ( Rel F -> ( Fun F <-> A. z A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
71 |
68 70
|
syl |
|- ( ph -> ( Fun F <-> A. z A. u A. v ( ( z F u /\ z F v ) -> u = v ) ) ) |
72 |
64 71
|
sylibrd |
|- ( ph -> ( A. x e. X A. y e. X ( A = C -> B = D ) -> Fun F ) ) |
73 |
35 72
|
impbid |
|- ( ph -> ( Fun F <-> A. x e. X A. y e. X ( A = C -> B = D ) ) ) |