Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
||
flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
||
fliftfun.4 | |- ( x = y -> A = C ) |
||
fliftfun.5 | |- ( x = y -> B = D ) |
||
fliftfund.6 | |- ( ( ph /\ ( x e. X /\ y e. X /\ A = C ) ) -> B = D ) |
||
Assertion | fliftfund | |- ( ph -> Fun F ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
2 | flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
|
3 | flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
|
4 | fliftfun.4 | |- ( x = y -> A = C ) |
|
5 | fliftfun.5 | |- ( x = y -> B = D ) |
|
6 | fliftfund.6 | |- ( ( ph /\ ( x e. X /\ y e. X /\ A = C ) ) -> B = D ) |
|
7 | 6 | 3exp2 | |- ( ph -> ( x e. X -> ( y e. X -> ( A = C -> B = D ) ) ) ) |
8 | 7 | imp32 | |- ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( A = C -> B = D ) ) |
9 | 8 | ralrimivva | |- ( ph -> A. x e. X A. y e. X ( A = C -> B = D ) ) |
10 | 1 2 3 4 5 | fliftfun | |- ( ph -> ( Fun F <-> A. x e. X A. y e. X ( A = C -> B = D ) ) ) |
11 | 9 10 | mpbird | |- ( ph -> Fun F ) |