Metamath Proof Explorer


Theorem fliftfund

Description: The function F is the unique function defined by FA = B , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1
|- F = ran ( x e. X |-> <. A , B >. )
flift.2
|- ( ( ph /\ x e. X ) -> A e. R )
flift.3
|- ( ( ph /\ x e. X ) -> B e. S )
fliftfun.4
|- ( x = y -> A = C )
fliftfun.5
|- ( x = y -> B = D )
fliftfund.6
|- ( ( ph /\ ( x e. X /\ y e. X /\ A = C ) ) -> B = D )
Assertion fliftfund
|- ( ph -> Fun F )

Proof

Step Hyp Ref Expression
1 flift.1
 |-  F = ran ( x e. X |-> <. A , B >. )
2 flift.2
 |-  ( ( ph /\ x e. X ) -> A e. R )
3 flift.3
 |-  ( ( ph /\ x e. X ) -> B e. S )
4 fliftfun.4
 |-  ( x = y -> A = C )
5 fliftfun.5
 |-  ( x = y -> B = D )
6 fliftfund.6
 |-  ( ( ph /\ ( x e. X /\ y e. X /\ A = C ) ) -> B = D )
7 6 3exp2
 |-  ( ph -> ( x e. X -> ( y e. X -> ( A = C -> B = D ) ) ) )
8 7 imp32
 |-  ( ( ph /\ ( x e. X /\ y e. X ) ) -> ( A = C -> B = D ) )
9 8 ralrimivva
 |-  ( ph -> A. x e. X A. y e. X ( A = C -> B = D ) )
10 1 2 3 4 5 fliftfun
 |-  ( ph -> ( Fun F <-> A. x e. X A. y e. X ( A = C -> B = D ) ) )
11 9 10 mpbird
 |-  ( ph -> Fun F )