Step |
Hyp |
Ref |
Expression |
1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
4 |
|
nfcv |
|- F/_ y <. A , B >. |
5 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ A |
6 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
7 |
5 6
|
nfop |
|- F/_ x <. [_ y / x ]_ A , [_ y / x ]_ B >. |
8 |
|
csbeq1a |
|- ( x = y -> A = [_ y / x ]_ A ) |
9 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
10 |
8 9
|
opeq12d |
|- ( x = y -> <. A , B >. = <. [_ y / x ]_ A , [_ y / x ]_ B >. ) |
11 |
4 7 10
|
cbvmpt |
|- ( x e. X |-> <. A , B >. ) = ( y e. X |-> <. [_ y / x ]_ A , [_ y / x ]_ B >. ) |
12 |
11
|
rneqi |
|- ran ( x e. X |-> <. A , B >. ) = ran ( y e. X |-> <. [_ y / x ]_ A , [_ y / x ]_ B >. ) |
13 |
1 12
|
eqtri |
|- F = ran ( y e. X |-> <. [_ y / x ]_ A , [_ y / x ]_ B >. ) |
14 |
2
|
ralrimiva |
|- ( ph -> A. x e. X A e. R ) |
15 |
5
|
nfel1 |
|- F/ x [_ y / x ]_ A e. R |
16 |
8
|
eleq1d |
|- ( x = y -> ( A e. R <-> [_ y / x ]_ A e. R ) ) |
17 |
15 16
|
rspc |
|- ( y e. X -> ( A. x e. X A e. R -> [_ y / x ]_ A e. R ) ) |
18 |
14 17
|
mpan9 |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ A e. R ) |
19 |
3
|
ralrimiva |
|- ( ph -> A. x e. X B e. S ) |
20 |
6
|
nfel1 |
|- F/ x [_ y / x ]_ B e. S |
21 |
9
|
eleq1d |
|- ( x = y -> ( B e. S <-> [_ y / x ]_ B e. S ) ) |
22 |
20 21
|
rspc |
|- ( y e. X -> ( A. x e. X B e. S -> [_ y / x ]_ B e. S ) ) |
23 |
19 22
|
mpan9 |
|- ( ( ph /\ y e. X ) -> [_ y / x ]_ B e. S ) |
24 |
|
csbeq1 |
|- ( y = z -> [_ y / x ]_ A = [_ z / x ]_ A ) |
25 |
|
csbeq1 |
|- ( y = z -> [_ y / x ]_ B = [_ z / x ]_ B ) |
26 |
13 18 23 24 25
|
fliftfun |
|- ( ph -> ( Fun F <-> A. y e. X A. z e. X ( [_ y / x ]_ A = [_ z / x ]_ A -> [_ y / x ]_ B = [_ z / x ]_ B ) ) ) |