Description: F , a function lift, is a subset of R X. S . (Contributed by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) | |
| flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) | ||
| flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) | ||
| Assertion | fliftrel | |- ( ph -> F C_ ( R X. S ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) | |
| 2 | flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) | |
| 3 | flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) | |
| 4 | 2 3 | opelxpd | |- ( ( ph /\ x e. X ) -> <. A , B >. e. ( R X. S ) ) | 
| 5 | 4 | fmpttd | |- ( ph -> ( x e. X |-> <. A , B >. ) : X --> ( R X. S ) ) | 
| 6 | 5 | frnd | |- ( ph -> ran ( x e. X |-> <. A , B >. ) C_ ( R X. S ) ) | 
| 7 | 1 6 | eqsstrid | |- ( ph -> F C_ ( R X. S ) ) |