Description: F , a function lift, is a subset of R X. S . (Contributed by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
||
flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
||
Assertion | fliftrel | |- ( ph -> F C_ ( R X. S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | |- F = ran ( x e. X |-> <. A , B >. ) |
|
2 | flift.2 | |- ( ( ph /\ x e. X ) -> A e. R ) |
|
3 | flift.3 | |- ( ( ph /\ x e. X ) -> B e. S ) |
|
4 | 2 3 | opelxpd | |- ( ( ph /\ x e. X ) -> <. A , B >. e. ( R X. S ) ) |
5 | 4 | fmpttd | |- ( ph -> ( x e. X |-> <. A , B >. ) : X --> ( R X. S ) ) |
6 | 5 | frnd | |- ( ph -> ran ( x e. X |-> <. A , B >. ) C_ ( R X. S ) ) |
7 | 1 6 | eqsstrid | |- ( ph -> F C_ ( R X. S ) ) |