Metamath Proof Explorer


Theorem fliftrel

Description: F , a function lift, is a subset of R X. S . (Contributed by Mario Carneiro, 23-Dec-2016)

Ref Expression
Hypotheses flift.1
|- F = ran ( x e. X |-> <. A , B >. )
flift.2
|- ( ( ph /\ x e. X ) -> A e. R )
flift.3
|- ( ( ph /\ x e. X ) -> B e. S )
Assertion fliftrel
|- ( ph -> F C_ ( R X. S ) )

Proof

Step Hyp Ref Expression
1 flift.1
 |-  F = ran ( x e. X |-> <. A , B >. )
2 flift.2
 |-  ( ( ph /\ x e. X ) -> A e. R )
3 flift.3
 |-  ( ( ph /\ x e. X ) -> B e. S )
4 2 3 opelxpd
 |-  ( ( ph /\ x e. X ) -> <. A , B >. e. ( R X. S ) )
5 4 fmpttd
 |-  ( ph -> ( x e. X |-> <. A , B >. ) : X --> ( R X. S ) )
6 5 frnd
 |-  ( ph -> ran ( x e. X |-> <. A , B >. ) C_ ( R X. S ) )
7 1 6 eqsstrid
 |-  ( ph -> F C_ ( R X. S ) )