| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flift.1 |
|- F = ran ( x e. X |-> <. A , B >. ) |
| 2 |
|
flift.2 |
|- ( ( ph /\ x e. X ) -> A e. R ) |
| 3 |
|
flift.3 |
|- ( ( ph /\ x e. X ) -> B e. S ) |
| 4 |
|
fliftval.4 |
|- ( x = Y -> A = C ) |
| 5 |
|
fliftval.5 |
|- ( x = Y -> B = D ) |
| 6 |
|
fliftval.6 |
|- ( ph -> Fun F ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ Y e. X ) -> Fun F ) |
| 8 |
|
simpr |
|- ( ( ph /\ Y e. X ) -> Y e. X ) |
| 9 |
|
eqidd |
|- ( ph -> D = D ) |
| 10 |
|
eqidd |
|- ( Y e. X -> C = C ) |
| 11 |
9 10
|
anim12ci |
|- ( ( ph /\ Y e. X ) -> ( C = C /\ D = D ) ) |
| 12 |
4
|
eqeq2d |
|- ( x = Y -> ( C = A <-> C = C ) ) |
| 13 |
5
|
eqeq2d |
|- ( x = Y -> ( D = B <-> D = D ) ) |
| 14 |
12 13
|
anbi12d |
|- ( x = Y -> ( ( C = A /\ D = B ) <-> ( C = C /\ D = D ) ) ) |
| 15 |
14
|
rspcev |
|- ( ( Y e. X /\ ( C = C /\ D = D ) ) -> E. x e. X ( C = A /\ D = B ) ) |
| 16 |
8 11 15
|
syl2anc |
|- ( ( ph /\ Y e. X ) -> E. x e. X ( C = A /\ D = B ) ) |
| 17 |
1 2 3
|
fliftel |
|- ( ph -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |
| 18 |
17
|
adantr |
|- ( ( ph /\ Y e. X ) -> ( C F D <-> E. x e. X ( C = A /\ D = B ) ) ) |
| 19 |
16 18
|
mpbird |
|- ( ( ph /\ Y e. X ) -> C F D ) |
| 20 |
|
funbrfv |
|- ( Fun F -> ( C F D -> ( F ` C ) = D ) ) |
| 21 |
7 19 20
|
sylc |
|- ( ( ph /\ Y e. X ) -> ( F ` C ) = D ) |