Description: A limit point of a filter belongs to its base set. (Contributed by Jeff Hankins, 4-Sep-2009) (Revised by Mario Carneiro, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | flimuni.1 | |- X = U. J |
|
| Assertion | flimelbas | |- ( A e. ( J fLim F ) -> A e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimuni.1 | |- X = U. J |
|
| 2 | 1 | elflim2 | |- ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
| 3 | 2 | simprbi | |- ( A e. ( J fLim F ) -> ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) |
| 4 | 3 | simpld | |- ( A e. ( J fLim F ) -> A e. X ) |