Step |
Hyp |
Ref |
Expression |
1 |
|
flimtop |
|- ( a e. ( J fLim F ) -> J e. Top ) |
2 |
|
eqid |
|- U. J = U. J |
3 |
2
|
flimfil |
|- ( a e. ( J fLim F ) -> F e. ( Fil ` U. J ) ) |
4 |
|
flimclsi |
|- ( x e. F -> ( J fLim F ) C_ ( ( cls ` J ) ` x ) ) |
5 |
4
|
sseld |
|- ( x e. F -> ( a e. ( J fLim F ) -> a e. ( ( cls ` J ) ` x ) ) ) |
6 |
5
|
com12 |
|- ( a e. ( J fLim F ) -> ( x e. F -> a e. ( ( cls ` J ) ` x ) ) ) |
7 |
6
|
ralrimiv |
|- ( a e. ( J fLim F ) -> A. x e. F a e. ( ( cls ` J ) ` x ) ) |
8 |
2
|
isfcls |
|- ( a e. ( J fClus F ) <-> ( J e. Top /\ F e. ( Fil ` U. J ) /\ A. x e. F a e. ( ( cls ` J ) ` x ) ) ) |
9 |
1 3 7 8
|
syl3anbrc |
|- ( a e. ( J fLim F ) -> a e. ( J fClus F ) ) |
10 |
9
|
ssriv |
|- ( J fLim F ) C_ ( J fClus F ) |