| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flimtop |  |-  ( a e. ( J fLim F ) -> J e. Top ) | 
						
							| 2 |  | eqid |  |-  U. J = U. J | 
						
							| 3 | 2 | flimfil |  |-  ( a e. ( J fLim F ) -> F e. ( Fil ` U. J ) ) | 
						
							| 4 |  | flimclsi |  |-  ( x e. F -> ( J fLim F ) C_ ( ( cls ` J ) ` x ) ) | 
						
							| 5 | 4 | sseld |  |-  ( x e. F -> ( a e. ( J fLim F ) -> a e. ( ( cls ` J ) ` x ) ) ) | 
						
							| 6 | 5 | com12 |  |-  ( a e. ( J fLim F ) -> ( x e. F -> a e. ( ( cls ` J ) ` x ) ) ) | 
						
							| 7 | 6 | ralrimiv |  |-  ( a e. ( J fLim F ) -> A. x e. F a e. ( ( cls ` J ) ` x ) ) | 
						
							| 8 | 2 | isfcls |  |-  ( a e. ( J fClus F ) <-> ( J e. Top /\ F e. ( Fil ` U. J ) /\ A. x e. F a e. ( ( cls ` J ) ` x ) ) ) | 
						
							| 9 | 1 3 7 8 | syl3anbrc |  |-  ( a e. ( J fLim F ) -> a e. ( J fClus F ) ) | 
						
							| 10 | 9 | ssriv |  |-  ( J fLim F ) C_ ( J fClus F ) |