| Step |
Hyp |
Ref |
Expression |
| 1 |
|
flimuni.1 |
|- X = U. J |
| 2 |
1
|
elflim2 |
|- ( A e. ( J fLim F ) <-> ( ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) /\ ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ F ) ) ) |
| 3 |
2
|
simplbi |
|- ( A e. ( J fLim F ) -> ( J e. Top /\ F e. U. ran Fil /\ F C_ ~P X ) ) |
| 4 |
3
|
simp2d |
|- ( A e. ( J fLim F ) -> F e. U. ran Fil ) |
| 5 |
|
filunirn |
|- ( F e. U. ran Fil <-> F e. ( Fil ` U. F ) ) |
| 6 |
4 5
|
sylib |
|- ( A e. ( J fLim F ) -> F e. ( Fil ` U. F ) ) |
| 7 |
3
|
simp3d |
|- ( A e. ( J fLim F ) -> F C_ ~P X ) |
| 8 |
|
sspwuni |
|- ( F C_ ~P X <-> U. F C_ X ) |
| 9 |
7 8
|
sylib |
|- ( A e. ( J fLim F ) -> U. F C_ X ) |
| 10 |
|
flimneiss |
|- ( A e. ( J fLim F ) -> ( ( nei ` J ) ` { A } ) C_ F ) |
| 11 |
|
flimtop |
|- ( A e. ( J fLim F ) -> J e. Top ) |
| 12 |
1
|
topopn |
|- ( J e. Top -> X e. J ) |
| 13 |
11 12
|
syl |
|- ( A e. ( J fLim F ) -> X e. J ) |
| 14 |
1
|
flimelbas |
|- ( A e. ( J fLim F ) -> A e. X ) |
| 15 |
|
opnneip |
|- ( ( J e. Top /\ X e. J /\ A e. X ) -> X e. ( ( nei ` J ) ` { A } ) ) |
| 16 |
11 13 14 15
|
syl3anc |
|- ( A e. ( J fLim F ) -> X e. ( ( nei ` J ) ` { A } ) ) |
| 17 |
10 16
|
sseldd |
|- ( A e. ( J fLim F ) -> X e. F ) |
| 18 |
|
elssuni |
|- ( X e. F -> X C_ U. F ) |
| 19 |
17 18
|
syl |
|- ( A e. ( J fLim F ) -> X C_ U. F ) |
| 20 |
9 19
|
eqssd |
|- ( A e. ( J fLim F ) -> U. F = X ) |
| 21 |
20
|
fveq2d |
|- ( A e. ( J fLim F ) -> ( Fil ` U. F ) = ( Fil ` X ) ) |
| 22 |
6 21
|
eleqtrd |
|- ( A e. ( J fLim F ) -> F e. ( Fil ` X ) ) |