| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flimfnfcls.x |  |-  X = U. J | 
						
							| 2 |  | flimfcls |  |-  ( J fLim g ) C_ ( J fClus g ) | 
						
							| 3 |  | flimtop |  |-  ( A e. ( J fLim F ) -> J e. Top ) | 
						
							| 4 | 1 | toptopon |  |-  ( J e. Top <-> J e. ( TopOn ` X ) ) | 
						
							| 5 | 3 4 | sylib |  |-  ( A e. ( J fLim F ) -> J e. ( TopOn ` X ) ) | 
						
							| 6 | 5 | ad2antrr |  |-  ( ( ( A e. ( J fLim F ) /\ g e. ( Fil ` X ) ) /\ F C_ g ) -> J e. ( TopOn ` X ) ) | 
						
							| 7 |  | simplr |  |-  ( ( ( A e. ( J fLim F ) /\ g e. ( Fil ` X ) ) /\ F C_ g ) -> g e. ( Fil ` X ) ) | 
						
							| 8 |  | simpr |  |-  ( ( ( A e. ( J fLim F ) /\ g e. ( Fil ` X ) ) /\ F C_ g ) -> F C_ g ) | 
						
							| 9 |  | flimss2 |  |-  ( ( J e. ( TopOn ` X ) /\ g e. ( Fil ` X ) /\ F C_ g ) -> ( J fLim F ) C_ ( J fLim g ) ) | 
						
							| 10 | 6 7 8 9 | syl3anc |  |-  ( ( ( A e. ( J fLim F ) /\ g e. ( Fil ` X ) ) /\ F C_ g ) -> ( J fLim F ) C_ ( J fLim g ) ) | 
						
							| 11 |  | simpll |  |-  ( ( ( A e. ( J fLim F ) /\ g e. ( Fil ` X ) ) /\ F C_ g ) -> A e. ( J fLim F ) ) | 
						
							| 12 | 10 11 | sseldd |  |-  ( ( ( A e. ( J fLim F ) /\ g e. ( Fil ` X ) ) /\ F C_ g ) -> A e. ( J fLim g ) ) | 
						
							| 13 | 2 12 | sselid |  |-  ( ( ( A e. ( J fLim F ) /\ g e. ( Fil ` X ) ) /\ F C_ g ) -> A e. ( J fClus g ) ) | 
						
							| 14 | 13 | ex |  |-  ( ( A e. ( J fLim F ) /\ g e. ( Fil ` X ) ) -> ( F C_ g -> A e. ( J fClus g ) ) ) | 
						
							| 15 | 14 | ralrimiva |  |-  ( A e. ( J fLim F ) -> A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) ) | 
						
							| 16 |  | sseq2 |  |-  ( g = F -> ( F C_ g <-> F C_ F ) ) | 
						
							| 17 |  | oveq2 |  |-  ( g = F -> ( J fClus g ) = ( J fClus F ) ) | 
						
							| 18 | 17 | eleq2d |  |-  ( g = F -> ( A e. ( J fClus g ) <-> A e. ( J fClus F ) ) ) | 
						
							| 19 | 16 18 | imbi12d |  |-  ( g = F -> ( ( F C_ g -> A e. ( J fClus g ) ) <-> ( F C_ F -> A e. ( J fClus F ) ) ) ) | 
						
							| 20 | 19 | rspcv |  |-  ( F e. ( Fil ` X ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> ( F C_ F -> A e. ( J fClus F ) ) ) ) | 
						
							| 21 |  | ssid |  |-  F C_ F | 
						
							| 22 |  | id |  |-  ( ( F C_ F -> A e. ( J fClus F ) ) -> ( F C_ F -> A e. ( J fClus F ) ) ) | 
						
							| 23 | 21 22 | mpi |  |-  ( ( F C_ F -> A e. ( J fClus F ) ) -> A e. ( J fClus F ) ) | 
						
							| 24 |  | fclstop |  |-  ( A e. ( J fClus F ) -> J e. Top ) | 
						
							| 25 | 1 | fclselbas |  |-  ( A e. ( J fClus F ) -> A e. X ) | 
						
							| 26 | 24 25 | jca |  |-  ( A e. ( J fClus F ) -> ( J e. Top /\ A e. X ) ) | 
						
							| 27 | 23 26 | syl |  |-  ( ( F C_ F -> A e. ( J fClus F ) ) -> ( J e. Top /\ A e. X ) ) | 
						
							| 28 | 20 27 | syl6 |  |-  ( F e. ( Fil ` X ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> ( J e. Top /\ A e. X ) ) ) | 
						
							| 29 |  | disjdif |  |-  ( o i^i ( X \ o ) ) = (/) | 
						
							| 30 |  | simpll |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> F e. ( Fil ` X ) ) | 
						
							| 31 |  | simplrl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> J e. Top ) | 
						
							| 32 | 1 | topopn |  |-  ( J e. Top -> X e. J ) | 
						
							| 33 | 31 32 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> X e. J ) | 
						
							| 34 |  | pwexg |  |-  ( X e. J -> ~P X e. _V ) | 
						
							| 35 |  | rabexg |  |-  ( ~P X e. _V -> { x e. ~P X | ( X \ o ) C_ x } e. _V ) | 
						
							| 36 | 33 34 35 | 3syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> { x e. ~P X | ( X \ o ) C_ x } e. _V ) | 
						
							| 37 |  | unexg |  |-  ( ( F e. ( Fil ` X ) /\ { x e. ~P X | ( X \ o ) C_ x } e. _V ) -> ( F u. { x e. ~P X | ( X \ o ) C_ x } ) e. _V ) | 
						
							| 38 | 30 36 37 | syl2anc |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( F u. { x e. ~P X | ( X \ o ) C_ x } ) e. _V ) | 
						
							| 39 |  | ssfii |  |-  ( ( F u. { x e. ~P X | ( X \ o ) C_ x } ) e. _V -> ( F u. { x e. ~P X | ( X \ o ) C_ x } ) C_ ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( F u. { x e. ~P X | ( X \ o ) C_ x } ) C_ ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) | 
						
							| 41 |  | filsspw |  |-  ( F e. ( Fil ` X ) -> F C_ ~P X ) | 
						
							| 42 |  | ssrab2 |  |-  { x e. ~P X | ( X \ o ) C_ x } C_ ~P X | 
						
							| 43 | 42 | a1i |  |-  ( F e. ( Fil ` X ) -> { x e. ~P X | ( X \ o ) C_ x } C_ ~P X ) | 
						
							| 44 | 41 43 | unssd |  |-  ( F e. ( Fil ` X ) -> ( F u. { x e. ~P X | ( X \ o ) C_ x } ) C_ ~P X ) | 
						
							| 45 | 44 | ad2antrr |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( F u. { x e. ~P X | ( X \ o ) C_ x } ) C_ ~P X ) | 
						
							| 46 |  | ssun2 |  |-  { x e. ~P X | ( X \ o ) C_ x } C_ ( F u. { x e. ~P X | ( X \ o ) C_ x } ) | 
						
							| 47 |  | sseq2 |  |-  ( x = ( X \ o ) -> ( ( X \ o ) C_ x <-> ( X \ o ) C_ ( X \ o ) ) ) | 
						
							| 48 |  | difss |  |-  ( X \ o ) C_ X | 
						
							| 49 |  | elpw2g |  |-  ( X e. J -> ( ( X \ o ) e. ~P X <-> ( X \ o ) C_ X ) ) | 
						
							| 50 | 33 49 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( ( X \ o ) e. ~P X <-> ( X \ o ) C_ X ) ) | 
						
							| 51 | 48 50 | mpbiri |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( X \ o ) e. ~P X ) | 
						
							| 52 |  | ssid |  |-  ( X \ o ) C_ ( X \ o ) | 
						
							| 53 | 52 | a1i |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( X \ o ) C_ ( X \ o ) ) | 
						
							| 54 | 47 51 53 | elrabd |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( X \ o ) e. { x e. ~P X | ( X \ o ) C_ x } ) | 
						
							| 55 | 46 54 | sselid |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( X \ o ) e. ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) | 
						
							| 56 | 55 | ne0d |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( F u. { x e. ~P X | ( X \ o ) C_ x } ) =/= (/) ) | 
						
							| 57 |  | sseq2 |  |-  ( x = z -> ( ( X \ o ) C_ x <-> ( X \ o ) C_ z ) ) | 
						
							| 58 | 57 | elrab |  |-  ( z e. { x e. ~P X | ( X \ o ) C_ x } <-> ( z e. ~P X /\ ( X \ o ) C_ z ) ) | 
						
							| 59 | 58 | simprbi |  |-  ( z e. { x e. ~P X | ( X \ o ) C_ x } -> ( X \ o ) C_ z ) | 
						
							| 60 | 59 | ad2antll |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( X \ o ) C_ z ) | 
						
							| 61 |  | sslin |  |-  ( ( X \ o ) C_ z -> ( y i^i ( X \ o ) ) C_ ( y i^i z ) ) | 
						
							| 62 | 60 61 | syl |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( y i^i ( X \ o ) ) C_ ( y i^i z ) ) | 
						
							| 63 |  | simprrr |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> -. o e. F ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> -. o e. F ) | 
						
							| 65 |  | inssdif0 |  |-  ( ( y i^i X ) C_ o <-> ( y i^i ( X \ o ) ) = (/) ) | 
						
							| 66 |  | simplll |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> F e. ( Fil ` X ) ) | 
						
							| 67 |  | simprl |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> y e. F ) | 
						
							| 68 |  | filelss |  |-  ( ( F e. ( Fil ` X ) /\ y e. F ) -> y C_ X ) | 
						
							| 69 | 66 67 68 | syl2anc |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> y C_ X ) | 
						
							| 70 |  | dfss2 |  |-  ( y C_ X <-> ( y i^i X ) = y ) | 
						
							| 71 | 69 70 | sylib |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( y i^i X ) = y ) | 
						
							| 72 | 71 | sseq1d |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( ( y i^i X ) C_ o <-> y C_ o ) ) | 
						
							| 73 | 30 | ad2antrr |  |-  ( ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) /\ y C_ o ) -> F e. ( Fil ` X ) ) | 
						
							| 74 |  | simplrl |  |-  ( ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) /\ y C_ o ) -> y e. F ) | 
						
							| 75 |  | elssuni |  |-  ( o e. J -> o C_ U. J ) | 
						
							| 76 | 75 1 | sseqtrrdi |  |-  ( o e. J -> o C_ X ) | 
						
							| 77 | 76 | ad2antrl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> o C_ X ) | 
						
							| 78 | 77 | ad2antrr |  |-  ( ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) /\ y C_ o ) -> o C_ X ) | 
						
							| 79 |  | simpr |  |-  ( ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) /\ y C_ o ) -> y C_ o ) | 
						
							| 80 |  | filss |  |-  ( ( F e. ( Fil ` X ) /\ ( y e. F /\ o C_ X /\ y C_ o ) ) -> o e. F ) | 
						
							| 81 | 73 74 78 79 80 | syl13anc |  |-  ( ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) /\ y C_ o ) -> o e. F ) | 
						
							| 82 | 81 | ex |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( y C_ o -> o e. F ) ) | 
						
							| 83 | 72 82 | sylbid |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( ( y i^i X ) C_ o -> o e. F ) ) | 
						
							| 84 | 65 83 | biimtrrid |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( ( y i^i ( X \ o ) ) = (/) -> o e. F ) ) | 
						
							| 85 | 84 | necon3bd |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( -. o e. F -> ( y i^i ( X \ o ) ) =/= (/) ) ) | 
						
							| 86 | 64 85 | mpd |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( y i^i ( X \ o ) ) =/= (/) ) | 
						
							| 87 |  | ssn0 |  |-  ( ( ( y i^i ( X \ o ) ) C_ ( y i^i z ) /\ ( y i^i ( X \ o ) ) =/= (/) ) -> ( y i^i z ) =/= (/) ) | 
						
							| 88 | 62 86 87 | syl2anc |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ ( y e. F /\ z e. { x e. ~P X | ( X \ o ) C_ x } ) ) -> ( y i^i z ) =/= (/) ) | 
						
							| 89 | 88 | ralrimivva |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> A. y e. F A. z e. { x e. ~P X | ( X \ o ) C_ x } ( y i^i z ) =/= (/) ) | 
						
							| 90 |  | filfbas |  |-  ( F e. ( Fil ` X ) -> F e. ( fBas ` X ) ) | 
						
							| 91 | 30 90 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> F e. ( fBas ` X ) ) | 
						
							| 92 | 48 | a1i |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( X \ o ) C_ X ) | 
						
							| 93 |  | filtop |  |-  ( F e. ( Fil ` X ) -> X e. F ) | 
						
							| 94 | 30 93 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> X e. F ) | 
						
							| 95 |  | eleq1 |  |-  ( o = X -> ( o e. F <-> X e. F ) ) | 
						
							| 96 | 94 95 | syl5ibrcom |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( o = X -> o e. F ) ) | 
						
							| 97 | 96 | necon3bd |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( -. o e. F -> o =/= X ) ) | 
						
							| 98 | 63 97 | mpd |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> o =/= X ) | 
						
							| 99 |  | pssdifn0 |  |-  ( ( o C_ X /\ o =/= X ) -> ( X \ o ) =/= (/) ) | 
						
							| 100 | 77 98 99 | syl2anc |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( X \ o ) =/= (/) ) | 
						
							| 101 |  | supfil |  |-  ( ( X e. J /\ ( X \ o ) C_ X /\ ( X \ o ) =/= (/) ) -> { x e. ~P X | ( X \ o ) C_ x } e. ( Fil ` X ) ) | 
						
							| 102 | 33 92 100 101 | syl3anc |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> { x e. ~P X | ( X \ o ) C_ x } e. ( Fil ` X ) ) | 
						
							| 103 |  | filfbas |  |-  ( { x e. ~P X | ( X \ o ) C_ x } e. ( Fil ` X ) -> { x e. ~P X | ( X \ o ) C_ x } e. ( fBas ` X ) ) | 
						
							| 104 | 102 103 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> { x e. ~P X | ( X \ o ) C_ x } e. ( fBas ` X ) ) | 
						
							| 105 |  | fbunfip |  |-  ( ( F e. ( fBas ` X ) /\ { x e. ~P X | ( X \ o ) C_ x } e. ( fBas ` X ) ) -> ( -. (/) e. ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) <-> A. y e. F A. z e. { x e. ~P X | ( X \ o ) C_ x } ( y i^i z ) =/= (/) ) ) | 
						
							| 106 | 91 104 105 | syl2anc |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( -. (/) e. ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) <-> A. y e. F A. z e. { x e. ~P X | ( X \ o ) C_ x } ( y i^i z ) =/= (/) ) ) | 
						
							| 107 | 89 106 | mpbird |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> -. (/) e. ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) | 
						
							| 108 |  | fsubbas |  |-  ( X e. F -> ( ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) e. ( fBas ` X ) <-> ( ( F u. { x e. ~P X | ( X \ o ) C_ x } ) C_ ~P X /\ ( F u. { x e. ~P X | ( X \ o ) C_ x } ) =/= (/) /\ -. (/) e. ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) | 
						
							| 109 | 94 108 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) e. ( fBas ` X ) <-> ( ( F u. { x e. ~P X | ( X \ o ) C_ x } ) C_ ~P X /\ ( F u. { x e. ~P X | ( X \ o ) C_ x } ) =/= (/) /\ -. (/) e. ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) | 
						
							| 110 | 45 56 107 109 | mpbir3and |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) e. ( fBas ` X ) ) | 
						
							| 111 |  | ssfg |  |-  ( ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) e. ( fBas ` X ) -> ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) C_ ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) | 
						
							| 112 | 110 111 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) C_ ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) | 
						
							| 113 | 40 112 | sstrd |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( F u. { x e. ~P X | ( X \ o ) C_ x } ) C_ ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) | 
						
							| 114 | 113 | unssad |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> F C_ ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) | 
						
							| 115 |  | fgcl |  |-  ( ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) e. ( fBas ` X ) -> ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) e. ( Fil ` X ) ) | 
						
							| 116 | 110 115 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) e. ( Fil ` X ) ) | 
						
							| 117 |  | sseq2 |  |-  ( g = ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) -> ( F C_ g <-> F C_ ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) | 
						
							| 118 |  | oveq2 |  |-  ( g = ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) -> ( J fClus g ) = ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) | 
						
							| 119 | 118 | eleq2d |  |-  ( g = ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) -> ( A e. ( J fClus g ) <-> A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) ) | 
						
							| 120 | 117 119 | imbi12d |  |-  ( g = ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) -> ( ( F C_ g -> A e. ( J fClus g ) ) <-> ( F C_ ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) -> A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) ) ) | 
						
							| 121 | 120 | rspcv |  |-  ( ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) e. ( Fil ` X ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> ( F C_ ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) -> A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) ) ) | 
						
							| 122 | 116 121 | syl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> ( F C_ ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) -> A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) ) ) | 
						
							| 123 | 114 122 | mpid |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) ) | 
						
							| 124 |  | simpr |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) -> A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) | 
						
							| 125 |  | simplrl |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) -> o e. J ) | 
						
							| 126 |  | simprrl |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> A e. o ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) -> A e. o ) | 
						
							| 128 | 113 55 | sseldd |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( X \ o ) e. ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) -> ( X \ o ) e. ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) | 
						
							| 130 |  | fclsopni |  |-  ( ( A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) /\ ( o e. J /\ A e. o /\ ( X \ o ) e. ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) -> ( o i^i ( X \ o ) ) =/= (/) ) | 
						
							| 131 | 124 125 127 129 130 | syl13anc |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) /\ A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) ) -> ( o i^i ( X \ o ) ) =/= (/) ) | 
						
							| 132 | 131 | ex |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( A e. ( J fClus ( X filGen ( fi ` ( F u. { x e. ~P X | ( X \ o ) C_ x } ) ) ) ) -> ( o i^i ( X \ o ) ) =/= (/) ) ) | 
						
							| 133 | 123 132 | syld |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> ( o i^i ( X \ o ) ) =/= (/) ) ) | 
						
							| 134 | 133 | necon2bd |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> ( ( o i^i ( X \ o ) ) = (/) -> -. A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) ) ) | 
						
							| 135 | 29 134 | mpi |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ ( o e. J /\ ( A e. o /\ -. o e. F ) ) ) -> -. A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) ) | 
						
							| 136 | 135 | anassrs |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ o e. J ) /\ ( A e. o /\ -. o e. F ) ) -> -. A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) ) | 
						
							| 137 | 136 | expr |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ o e. J ) /\ A e. o ) -> ( -. o e. F -> -. A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) ) ) | 
						
							| 138 | 137 | con4d |  |-  ( ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ o e. J ) /\ A e. o ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> o e. F ) ) | 
						
							| 139 | 138 | ex |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ o e. J ) -> ( A e. o -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> o e. F ) ) ) | 
						
							| 140 | 139 | com23 |  |-  ( ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) /\ o e. J ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> ( A e. o -> o e. F ) ) ) | 
						
							| 141 | 140 | ralrimdva |  |-  ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> A. o e. J ( A e. o -> o e. F ) ) ) | 
						
							| 142 |  | simprr |  |-  ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) -> A e. X ) | 
						
							| 143 | 141 142 | jctild |  |-  ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> ( A e. X /\ A. o e. J ( A e. o -> o e. F ) ) ) ) | 
						
							| 144 |  | simprl |  |-  ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) -> J e. Top ) | 
						
							| 145 | 144 4 | sylib |  |-  ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) -> J e. ( TopOn ` X ) ) | 
						
							| 146 |  | simpl |  |-  ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) -> F e. ( Fil ` X ) ) | 
						
							| 147 |  | flimopn |  |-  ( ( J e. ( TopOn ` X ) /\ F e. ( Fil ` X ) ) -> ( A e. ( J fLim F ) <-> ( A e. X /\ A. o e. J ( A e. o -> o e. F ) ) ) ) | 
						
							| 148 | 145 146 147 | syl2anc |  |-  ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) -> ( A e. ( J fLim F ) <-> ( A e. X /\ A. o e. J ( A e. o -> o e. F ) ) ) ) | 
						
							| 149 | 143 148 | sylibrd |  |-  ( ( F e. ( Fil ` X ) /\ ( J e. Top /\ A e. X ) ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> A e. ( J fLim F ) ) ) | 
						
							| 150 | 149 | ex |  |-  ( F e. ( Fil ` X ) -> ( ( J e. Top /\ A e. X ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> A e. ( J fLim F ) ) ) ) | 
						
							| 151 | 150 | com23 |  |-  ( F e. ( Fil ` X ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> ( ( J e. Top /\ A e. X ) -> A e. ( J fLim F ) ) ) ) | 
						
							| 152 | 28 151 | mpdd |  |-  ( F e. ( Fil ` X ) -> ( A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) -> A e. ( J fLim F ) ) ) | 
						
							| 153 | 15 152 | impbid2 |  |-  ( F e. ( Fil ` X ) -> ( A e. ( J fLim F ) <-> A. g e. ( Fil ` X ) ( F C_ g -> A e. ( J fClus g ) ) ) ) |