| Step | Hyp | Ref | Expression | 
						
							| 1 |  | flimval.1 |  |-  X = U. J | 
						
							| 2 | 1 | topopn |  |-  ( J e. Top -> X e. J ) | 
						
							| 3 | 2 | adantr |  |-  ( ( J e. Top /\ F e. U. ran Fil ) -> X e. J ) | 
						
							| 4 |  | rabexg |  |-  ( X e. J -> { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } e. _V ) | 
						
							| 5 | 3 4 | syl |  |-  ( ( J e. Top /\ F e. U. ran Fil ) -> { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } e. _V ) | 
						
							| 6 |  | simpl |  |-  ( ( j = J /\ f = F ) -> j = J ) | 
						
							| 7 | 6 | unieqd |  |-  ( ( j = J /\ f = F ) -> U. j = U. J ) | 
						
							| 8 | 7 1 | eqtr4di |  |-  ( ( j = J /\ f = F ) -> U. j = X ) | 
						
							| 9 | 6 | fveq2d |  |-  ( ( j = J /\ f = F ) -> ( nei ` j ) = ( nei ` J ) ) | 
						
							| 10 | 9 | fveq1d |  |-  ( ( j = J /\ f = F ) -> ( ( nei ` j ) ` { x } ) = ( ( nei ` J ) ` { x } ) ) | 
						
							| 11 |  | simpr |  |-  ( ( j = J /\ f = F ) -> f = F ) | 
						
							| 12 | 10 11 | sseq12d |  |-  ( ( j = J /\ f = F ) -> ( ( ( nei ` j ) ` { x } ) C_ f <-> ( ( nei ` J ) ` { x } ) C_ F ) ) | 
						
							| 13 | 8 | pweqd |  |-  ( ( j = J /\ f = F ) -> ~P U. j = ~P X ) | 
						
							| 14 | 11 13 | sseq12d |  |-  ( ( j = J /\ f = F ) -> ( f C_ ~P U. j <-> F C_ ~P X ) ) | 
						
							| 15 | 12 14 | anbi12d |  |-  ( ( j = J /\ f = F ) -> ( ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) <-> ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) ) ) | 
						
							| 16 | 8 15 | rabeqbidv |  |-  ( ( j = J /\ f = F ) -> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) | 
						
							| 17 |  | df-flim |  |-  fLim = ( j e. Top , f e. U. ran Fil |-> { x e. U. j | ( ( ( nei ` j ) ` { x } ) C_ f /\ f C_ ~P U. j ) } ) | 
						
							| 18 | 16 17 | ovmpoga |  |-  ( ( J e. Top /\ F e. U. ran Fil /\ { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } e. _V ) -> ( J fLim F ) = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) | 
						
							| 19 | 5 18 | mpd3an3 |  |-  ( ( J e. Top /\ F e. U. ran Fil ) -> ( J fLim F ) = { x e. X | ( ( ( nei ` J ) ` { x } ) C_ F /\ F C_ ~P X ) } ) |