Metamath Proof Explorer


Theorem fllep1

Description: A basic property of the floor (greatest integer) function. (Contributed by Mario Carneiro, 21-May-2016)

Ref Expression
Assertion fllep1
|- ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) )

Proof

Step Hyp Ref Expression
1 flltp1
 |-  ( A e. RR -> A < ( ( |_ ` A ) + 1 ) )
2 reflcl
 |-  ( A e. RR -> ( |_ ` A ) e. RR )
3 peano2re
 |-  ( ( |_ ` A ) e. RR -> ( ( |_ ` A ) + 1 ) e. RR )
4 2 3 syl
 |-  ( A e. RR -> ( ( |_ ` A ) + 1 ) e. RR )
5 ltle
 |-  ( ( A e. RR /\ ( ( |_ ` A ) + 1 ) e. RR ) -> ( A < ( ( |_ ` A ) + 1 ) -> A <_ ( ( |_ ` A ) + 1 ) ) )
6 4 5 mpdan
 |-  ( A e. RR -> ( A < ( ( |_ ` A ) + 1 ) -> A <_ ( ( |_ ` A ) + 1 ) ) )
7 1 6 mpd
 |-  ( A e. RR -> A <_ ( ( |_ ` A ) + 1 ) )